Дослідження гібридної модифікації гуміновими кислотами екологічно безпечних біодеградабельних плівок на основі гідроксипропілметилцелюлози
Attachment | Size |
---|---|
full_text.pdf | 529.68 KB |
Keywords:
[1] Cabrera, F.C. Eco-Friendly Polymer Composites: A Review of Suitable Methods for Waste Management. Polym. Compos. 2021, 42, 2653– 2677. https://doi.org/10.1002/pc.26033
[2] Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in Soil Ecosystems: Progress and Perspective. Sci. Total Environ. 2020, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841
[3] Karamanlioglu, M.; Preziosi, R.; Robson, G.D. Abiotic and biotic environmental degradation on the Bioplastic Polymer Poly(Lactic Acid): A Review. Polym. Degrad. Stab. 2017, 137, 122-130. https://doi.org/10.1016/j.polymdegradstab.2017.01.009
[4] Abbasi, S.; Haeri, S.A. Biodegradable Materials and Their Applications in Sample Preparation Techniques – A Review. Microchem. J. 2021, 171, 106831. https://doi.org/10.1016/j.microc.2021.106831
[5] Cai, Q.; Li, X.; Zhu, W. High Molecular Weight Biodegradable Poly(ethylene glycol) via Carboxyl-Ester Transesterification. Ma-cromolecules 2020, 53, 2177-218. https://doi.org/10.1021/acs.macromol.9b02177
[6] Voronov, A.; Vasylyev, S.; Kohut, A.; Peukert, W. Surface Activity of New Invertible Amphiphilic Polyesters Based on Poly(ethylene glycol) and Aliphatic Dicarboxylic Acids. J. Colloid Interface Sci. 2008, 323, 379–385. https://doi.org/10.1016/j.jcis.2008.04.053
[7] Kohut, A.; Voronov, A.; Voronov, S. Micellization and Adsolubilization of Amphiphilic Invertible Polyesters. Chem. Chem. Technol. 2014, 8, 67-80. https://doi.org/10.23939/chcht08.01
[8] Anukiruthika, T.; Sethupathy, P.; Wilson, A.; Kashampur, K.; Moses, J.A.; Anandharamakrishnan, C. Multilayer Packaging: Advances in Preparation Techniques and Emerging Food Applica-tions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1156-1186. https://doi.org/10.1111/1541-4337.12556
[9] Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz A. Edible films and Coatings: Structures, Active Function and trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303. https://doi.org/10.1016/j.tifs.2011.02.004
[10] Lebedev, V.; Tykhomyrova, T.; Litvinenko, I.; Avina, S.; Saimbetova, Z. Design and Research of Eco-Friendly Polymer Composites. Mater. Sci. Forum 2020, 1006, 259-266. https://doi.org/10.4028/www.scientific.net/MSF.1006.259
[11] Lebedev, V.; Tykhomyrova, T.; Filenko, O.; Cherkashina, A.; Lytvynenko, O. Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums. Mater. Sci. Forum 2021, 1038, 168-174. https://doi.org/10.4028/www.scientific.net/MSF.1038.168
[12] Lebedev, V.; Miroshnichenko, D.; Bilets, D.; Mysiak, V. Investigation of Hybrid Modification of Eco-Friendly Polymers by Humic Substances. Solid State Phenom. 2022, 334, 154-161. https://doi.org/10.4028/p-gv30w7
[13] Cecchini, C. The Rapid Plastic Revolution: Superstrong Poly-mers and Biomaterials. In Plastic Days. Materials & Design; Cecchini, C.; Petroni, M., Eds.; Silvana Editoriale, 2015; рр 36-61.
[14] Gómez-Aldapa, C.A.; Velazquez, G.; Gutierrez, M.C.; Rangel-Vargas, E.; Castro-Rosas, J.; Aguierre-Loredo, R.Y. Effect of Polyvinyl Alcohol on the Physicochemical Properties of Biodegradable Starch Films. Mater. Chem. Phys. 2020, 239, 122027. https://doi.org/10.1016/j.matchemphys.2019.122027
[15] Marcos, B.; Aymerich, T.; Monfort, J.M.; Garriga, M. Use of Antimicrobial Biodegradable Packaging to Control Listeria monocytogenes During Storage of Cooked Ham. Int. J. Food Microbiol. 2007, 120, 152–158. https://doi.org/10.1016/j.ijfoodmicro.2007.06.003
[16] Abral, H.; Atmajaya, A.; Mahardika, M.; Hafizulhaq, F.; Kadriadi; Handayani, D.; Sapuan, S.M.; Ilyas, R.A. J. Mater. Res. Technol. 2020, 9, 2477-2486. https://doi.org/10.1016/j.jmrt.2019.12.078
[17] Brandelero, R.P.H.; Brandelero. E.M.; de Almeida, F.M. Biodegradable Films of Starch/PVOH/Alginate in Packaging Systems for Minimally Processed Lettuce (Lactuca sativa L.). Cienc. e Agrotecnologia 2016, 40, 510–521. https://doi.org/10.1590/1413-70542016405010516
[18] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D. Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Pet. Coal 2021, 63, 646-654. https://www.vurup.sk/wp-content/uploads/2021/08/PC-X_Miroshnichenko_31_r...
[19] Miroshnichenko, D.V.; Pyshyev, S.V.; Lebedev, V.V.; Bilets, D.Y. Deposits and Quality Indicators of Brown Coal in Ukraine. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2022, (3), 5-10. https://doi.org/10.33271/nvngu/2022-3/005
[20] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of Humic Acids from Low-Grade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol. Pet. Coal 2021, 63, 953-962. https://www.vurup.sk/petroleum/2021/volume-63/#volume-63-2021-issue-4
[21] Lebedev, V.; Sizhuo, D.; Xiaobin, Z.; Miroshnichenko, D.; Pyshyev, S.; Savchenko, D. Hybrid Modification of Eco-Friendly Biodegradable Polymeric Films by Humic Substances from Low-Grade Metamorphism Coal. Pet. Coal 2022, 64, 539-546. https://www.vurup.sk/wp-content/uploads/2022/09/PC-X_Miroshnichenko-178.pdf
[22] EMEA. Committee for veterinary medicinal products—humic acids and their sodium salts, Summary report. EMEA, Amsterdam, Netherlands: European Agency for the Evaluation of Medicinal Products; 1999.
[23] Gandy, J.; Meeding, J. P.; Snyman, J. R.;Van Rensburg C. E. Phase 1 clinical study of the acute and subacute safety and proof-of-concept efficacy of carbohydrate-derived fulvic acid. Clinical Phar-macology: Advances and Applications 2012, 4, 7–11. https://doi: 10.2147/cpaa.s25784.
[24] Plastics. Evaluation of the ability to biochemical decomposi-tion. Test procedure and technical conditions, 2018. http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=80595#:~:t...) (accessed 2022-11-29).
[25] Wang, L.F.; Chen, W.B.; Chen, T.Y.; Lu, S.C. Effects of the preparation methods of hydroxypropyl methylcellulose/polyacrylic acid blended films on drug release. Journal of Biomaterials Science 2003, 14(1), 27-44. https://doi: 10.1163/15685620360511128.