Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose

Volodymyr Lebedev1, Denis Miroshnichenko1, Serhiy Pyshyev2, Ananiy Kohut2
Affiliation: 
1 National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova St., Kharkiv 61002, Ukraine 2 Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine gajva@polynet.lviv.ua
DOI: 
https://doi.org/10.23939/chcht17.02.357
AttachmentSize
PDF icon full_text.pdf529.68 KB
Abstract: 
The possibility of increasing the strength and operational properties of ecologically safe biodegradable polymeric materials based on hydroxypropyl methyl cellulose by using its modification with the different types of humic acids (HAs) from lignite is considered. Hybrid ecologically safe high-strength films with antibacterial properties were obtained for the first time. Physicochemical studies and IR spectroscopy confirmed the development of hybrid structures of hydroxypropyl methyl cellulose, modified with the different types of HAs. Changes in water absorption, tensile strength, relative elongation at break, and time of mold appearance for the environmentally safe biodegradable polymeric materials based on hydroxypropyl methyl cellulose were revealed depending on the content of the different types of humic acids. It was also shown that the hybrid modification of hydroxypropyl methyl cellulose with the different types of HAs allows preserving the biodegradability of the films along with imparting the antibacterial properties. The developed ecologically safe biodegradable films with antibacterial properties based on hydroxypropyl methyl cellulose and HAs, in terms of their operational characteristics, are superior to the known similar biodegradable films based on natural biopolymers.
References: 

[1] Cabrera, F.C. Eco-Friendly Polymer Composites: A Review of Suitable Methods for Waste Management. Polym. Compos. 2021, 42, 2653- 2677. https://doi.org/10.1002/pc.26033
https://doi.org/10.1002/pc.26033

[2] Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in Soil Ecosystems: Progress and Perspective. Sci. Total Environ. 2020, 708, 134841. https://doi.org/10.1016/j.scitotenv.2019.134841
https://doi.org/10.1016/j.scitotenv.2019.134841

[3] Karamanlioglu, M.; Preziosi, R.; Robson, G.D. Abiotic and biotic environmental degradation on the Bioplastic Polymer Poly(Lactic Acid): A Review. Polym. Degrad. Stab. 2017, 137, 122-130. https://doi.org/10.1016/j.polymdegradstab.2017.01.009
https://doi.org/10.1016/j.polymdegradstab.2017.01.009

[4] Abbasi, S.; Haeri, S.A. Biodegradable Materials and Their Applications in Sample Preparation Techniques - A Review. Microchem. J. 2021, 171, 106831. https://doi.org/10.1016/j.microc.2021.106831
https://doi.org/10.1016/j.microc.2021.106831

[5] Cai, Q.; Li, X.; Zhu, W. High Molecular Weight Biodegradable Poly(ethylene glycol) via Carboxyl-Ester Transesterification. Ma-cromolecules 2020, 53, 2177-218. https://doi.org/10.1021/acs.macromol.9b02177
https://doi.org/10.1021/acs.macromol.9b02177

[6] Voronov, A.; Vasylyev, S.; Kohut, A.; Peukert, W. Surface Activity of New Invertible Amphiphilic Polyesters Based on Poly(ethylene glycol) and Aliphatic Dicarboxylic Acids. J. Colloid Interface Sci. 2008, 323, 379-385. https://doi.org/10.1016/j.jcis.2008.04.053
https://doi.org/10.1016/j.jcis.2008.04.053

[7] Kohut, A.; Voronov, A.; Voronov, S. Micellization and Adsolubilization of Amphiphilic Invertible Polyesters. Chem. Chem. Technol. 2014, 8, 67-80. https://doi.org/10.23939/chcht08.01
https://doi.org/10.23939/chcht08.01

[8] Anukiruthika, T.; Sethupathy, P.; Wilson, A.; Kashampur, K.; Moses, J.A.; Anandharamakrishnan, C. Multilayer Packaging: Advances in Preparation Techniques and Emerging Food Applica-tions. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1156-1186. https://doi.org/10.1111/1541-4337.12556
https://doi.org/10.1111/1541-4337.12556

[9] Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz A. Edible films and Coatings: Structures, Active Function and trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292-303. https://doi.org/10.1016/j.tifs.2011.02.004
https://doi.org/10.1016/j.tifs.2011.02.004

[10] Lebedev, V.; Tykhomyrova, T.; Litvinenko, I.; Avina, S.; Saimbetova, Z. Design and Research of Eco-Friendly Polymer Composites. Mater. Sci. Forum 2020, 1006, 259-266. https://doi.org/10.4028/www.scientific.net/MSF.1006.259
https://doi.org/10.4028/www.scientific.net/MSF.1006.259

[11] Lebedev, V.; Tykhomyrova, T.; Filenko, O.; Cherkashina, A.; Lytvynenko, O. Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums. Mater. Sci. Forum 2021, 1038, 168-174. https://doi.org/10.4028/www.scientific.net/MSF.1038.168
https://doi.org/10.4028/www.scientific.net/MSF.1038.168

[12] Lebedev, V.; Miroshnichenko, D.; Bilets, D.; Mysiak, V. Investigation of Hybrid Modification of Eco-Friendly Polymers by Humic Substances. Solid State Phenom. 2022, 334, 154-161. https://doi.org/10.4028/p-gv30w7
https://doi.org/10.4028/p-gv30w7

[13] Cecchini, C. The Rapid Plastic Revolution: Superstrong Poly-mers and Biomaterials. In Plastic Days. Materials & Design; Cecchini, C.; Petroni, M., Eds.; Silvana Editoriale, 2015; рр 36-61.

[14] Gómez-Aldapa, C.A.; Velazquez, G.; Gutierrez, M.C.; Rangel-Vargas, E.; Castro-Rosas, J.; Aguierre-Loredo, R.Y. Effect of Polyvinyl Alcohol on the Physicochemical Properties of Biodegradable Starch Films. Mater. Chem. Phys. 2020, 239, 122027. https://doi.org/10.1016/j.matchemphys.2019.122027
https://doi.org/10.1016/j.matchemphys.2019.122027

[15] Marcos, B.; Aymerich, T.; Monfort, J.M.; Garriga, M. Use of Antimicrobial Biodegradable Packaging to Control Listeria monocytogenes During Storage of Cooked Ham. Int. J. Food Microbiol. 2007, 120, 152-158. https://doi.org/10.1016/j.ijfoodmicro.2007.06.003
https://doi.org/10.1016/j.ijfoodmicro.2007.06.003

[16] Abral, H.; Atmajaya, A.; Mahardika, M.; Hafizulhaq, F.; Kadriadi; Handayani, D.; Sapuan, S.M.; Ilyas, R.A. J. Mater. Res. Technol. 2020, 9, 2477-2486. https://doi.org/10.1016/j.jmrt.2019.12.078
https://doi.org/10.1016/j.jmrt.2019.12.078

[17] Brandelero, R.P.H.; Brandelero. E.M.; de Almeida, F.M. Biodegradable Films of Starch/PVOH/Alginate in Packaging Systems for Minimally Processed Lettuce (Lactuca sativa L.). Cienc. e Agrotecnologia 2016, 40, 510-521. https://doi.org/10.1590/1413-70542016405010516
https://doi.org/10.1590/1413-70542016405010516

[18] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D. Technological Properties of Polymers Obtained from Humic Acids of Ukrainian Lignite. Pet. Coal 2021, 63, 646-654. https://www.vurup.sk/wp-content/uploads/2021/08/PC-X_Miroshnichenko_31_r...

[19] Miroshnichenko, D.V.; Pyshyev, S.V.; Lebedev, V.V.; Bilets, D.Y. Deposits and Quality Indicators of Brown Coal in Ukraine. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2022, (3), 5-10. https://doi.org/10.33271/nvngu/2022-3/005
https://doi.org/10.33271/nvngu/2022-3/005

[20] Lebedev, V.; Miroshnichenko, D.; Xiaobin, Z.; Pyshyev, S.; Savchenko, D.; Nikolaichuk, Y. Use of Humic Acids from Low-Grade Metamorphism Coal for the Modification of Biofilms Based on Polyvinyl Alcohol. Pet. Coal 2021, 63, 953-962. https://www.vurup.sk/petroleum/2021/volume-63/#volume-63-2021-issue-4

[21] Lebedev, V.; Sizhuo, D.; Xiaobin, Z.; Miroshnichenko, D.; Pyshyev, S.; Savchenko, D. Hybrid Modification of Eco-Friendly Biodegradable Polymeric Films by Humic Substances from Low-Grade Metamorphism Coal. Pet. Coal 2022, 64, 539-546. https://www.vurup.sk/wp-content/uploads/2022/09/PC-X_Miroshnichenko-178.pdf

[22] EMEA. Committee for veterinary medicinal products-humic acids and their sodium salts, Summary report. EMEA, Amsterdam, Netherlands: European Agency for the Evaluation of Medicinal Products; 1999.

[23] Gandy, J.; Meeding, J. P.; Snyman, J. R.;Van Rensburg C. E. Phase 1 clinical study of the acute and subacute safety and proof-of-concept efficacy of carbohydrate-derived fulvic acid. Clinical Phar-macology: Advances and Applications 2012, 4, 7-11. https://doi: 10.2147/cpaa.s25784.
https://doi.org/10.2147/CPAA.S25784

[24] Plastics. Evaluation of the ability to biochemical decomposi-tion. Test procedure and technical conditions, 2018. http://online.budstandart.com/ua/catalog/doc-page.html?id_doc=80595#:~:t...) (accessed 2022-11-29).

[25] Wang, L.F.; Chen, W.B.; Chen, T.Y.; Lu, S.C. Effects of the preparation methods of hydroxypropyl methylcellulose/polyacrylic acid blended films on drug release. Journal of Biomaterials Science 2003, 14(1), 27-44. https://doi: 10.1163/15685620360511128.
https://doi.org/10.1163/15685620360511128