Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Методи розділення емульсій важкої нафти. огляд

Petro Topilnytskyy1, Maksym Shyshchak1, Volodymyr Skorokhoda1, Vasyl Torskyi1
Affiliation: 
1 Lviv Polytechnic National University, 12, Bandery St., 79013 Lviv, Ukraine topoil@lp.edu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.270
AttachmentSize
PDF icon full_text.pdf519.42 KB
Abstract: 
Деемульгування (зневоднення) є однією з найважливіших проблем у нафтовій промисловості. Особливістю емульсій важких нафт є їхня висока стабільність, оскільки важка нафта містить значну кількість смол та асфальтенів. У цій статті подано огляд проблеми зневоднення важких нафтових емульсій, підкреслено важливість розуміння їхніх властивостей для розробки відповідних методів деемульгування. Особливу увагу приділено використанню екологічно безпечних деемульгаторів. Аналіз поточних досліджень у цій галузі буде корисним для науковців та інженерів.
References: 

[1] Ezzat, A.O.; Atta, A.M.; Al-Lohedan, H.A. One-Step Synthesis of Amphiphilic Nonylphenol Polyethyleneimine for Demulsification of Water in Heavy Crude Oil Emulsions. ACS Omega 2020, 5(16), 9212–9223. https://doi.org/10.1021/acsomega.0c00002
[2] Abdulredha, M.M.; Aslina, H.S.; Luqman, C.A. Overview on Petroleum Emulsions, Formation, Influence and Demulsification Treatment Techniques. Arab. J. Chem. 2020, 13(1), 3403−3428. https://doi.org/10.1016/j.arabjc.2018.11.014
[3] Salam, K.; Alade, A.; Arinkoola, A.; Opawale, A. Improving the Demulsification Process of Heavy Crude Oil Emulsion through Blending with Diluent. J. Pet. Eng. 2013, Article ID 793101. https://doi.org/10.1155/2013/793101
[4] Raya, S.A.; Mohd Saaid, I.; Abbas Ahmed, A. et al. A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry. J. Pet. Explor. Prod. Technol. 2020, 10, 1711–1728. https://doi.org/10.1007/s13202-020-00830-7
[5] Fajun, Z.; Zhexi, T.; Zhongqi, Y.; Hongzhi, S.; Yanping, W.; Yufei, Z. Research Status and Analysis of Stabilization Mechanisms and Demulsification Methods of Heavy Oil Emulsions. Energy Sci. Eng. 2020 , 8(12), 4158−4177. https://doi.org/10.1002/ese3.814
[6] Yarmola, T.V.; Topilnytskyy, P.I., Skorokhoda, V.J.; Korchak B.O. Processing of Heavy High-Viscosity Oil Mixtures from the Eastern Region of Ukraine: Technological Aspects. Voprosy Khimii i Khimicheskoi Tekhnologii 2023, 1, 40−49. https://doi.org/10.32434/0321-4095-2023-146-1-40-49
[7] Lee, J.; Babadagli, T. Comprehensive Review on Heavy-Oil Emulsions: Colloid Science and Practical Applications, Chem. Eng. Sci. 2020, 228, 115962, https://doi.org/10.1016/j.ces.2020.115962
[8] Topilnytskyy, P.; Paiuk, S.; Stebelska, H.; Romanchuk, V.; Yarmola, T. Technological Features of High-Sulfur Heavy Crude Oils Processing. Chem. Chem. Technol. 2019, 13, 503−509. https://doi.org/10.23939/chcht13.04.503
[9] Faizullayev, S.; Adilbekova, A.; Kujawski, W.; Mirzaeian, M. Recent Demulsification Methods of Crude Oil Emulsions – Brief Review. J. Pet. Sci. Eng. 2022, 215, Part B, 110643. https://doi.org/10.1016/j.petrol.2022.110643
[10] Soliman, E. Flow of Heavy Oils at Low Temperatures: Potential Challenges and Solutions. In Processing of Heavy Crude Oils - Challenges and Opportunities; IntechOpen, 2019. https://doi.org/10.5772/intechopen.82286
[11] Zamora, E.B.; Hernández, E.I.; Zavala, G.; Fuentes, J.V.; Álvarez, F.; Flores, C.A.; Vázquez, F. High Performance Demulsifiers for Heavy Crude Oil Based on Alkyl Acrylic-Amino Alkyl Acrylic Random Bipolymers. Sep. Purif. Technol. 2021, 275, 119212. https://doi.org/10.1016/j.seppur.2021.119212
[12] Abed, S.M.; Abdurahman, N.H.; Yunus, R.M.; Abdulbari, H.A.; Akbari, S. Oil Emulsions and the Different Recent Demulsification Techniques in the Petroleum Industry - A Review. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 702, 012060; 1st ProSES Symposium, Kuantan, Pahang, Malaysia, September 4, 2019; https://doi.org/10.1088/1757-899X/702/1/012060
[13] Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A Review of Petroleum Emulsions and Recent Progress on Water-in-Crude Oil Emulsions Stabilized by Natural Surfactants and Solids. J. Pet. Sci. Eng. 2018, 165, 673−690. https://doi.org/10.1016/j.petrol.2018.03.014
[14] Saad, M.A.; Kamil, M.; Abdurahman, N.H.; Yunus, R.M.; Awad, O.I. An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions. Processes 2019, 7(7), 470. https://doi.org/10.3390/pr7070470
[15] Hadi, A.A.; Ali, A.A. A Review of Petroleum Emulsification Types, Formation Factors, and Demulsification Methods. Mater. Today Proc., 2022, 53, Part 1, 273–279. https://doi.org/10.1016/j.matpr.2022.01.091
[16] Abdulredha, M.M.; Hussain, S.A.; Abdullah, L.C.; Hong, T.L. Water-in-Oil Emulsion Stability and Demulsification via Surface-Active Compounds: A Review. J. Pet. Sci. Eng. 2022, 209, 109848. https://doi.org/10.1016/j.petrol.2021.109848
[17] Arab, D.; Kantzas, A.; Bryant, S.L. Nanoparticle Stabilized Oil in Water Emulsions: A Critical Review. J. Pet. Sci. Eng. 2018, 163, 217–242. https://doi.org/10.1016/j.petrol.2017.12.091
[18] Faisal, W.; Almomani, F. A Critical Review of the Development and Demulsification Processes Applied for Oil Recovery from Oil in Water Emulsions. Chemosphere 2022, 291, 133099. https://doi.org/10.1016/j.chemosphere.2021.133099
[19] Kilpatrick, P.K. Water-in-Crude Oil Emulsion Stabilization: Review and Unanswered Questions. Energy Fuels 2012, 26, 4017–4026. https://doi.org/10.1021/ef3003262
[20] Yao, L.; Selmi, A.; Esmaeili, H. A Review Study on New Aspects of Biodemulsifiers: Production, Features and their Application in Wastewater Treatment. Chemosphere, 2021, 284, 131364. https://doi.org/10.1016/j.chemosphere.2021.131364
[21] Zang, H.; Dai, Y.; Sun, Y.; Jia, T.; Song, Q.; Li, X.; Jiang, X.; Sui, D., Han, Z., Li, D. et al. Mechanism of the Biodemulsifier-Enhanced Biodegradation of Phenanthrene by Achromobacter sp. LH-1. Colloids Surf. B 2020, 195, 111253. https://doi.org/10.1016/j.colsurfb.2020.111253
[22] Sabati, H.; Motamedi, H. Ecofriendly Demulsification of Water in Oil Emulsions by an Efficient Biodemulsifier Producing Bacterium Isolated from Oil Contaminated Environment. Biotechnol. Lett. 2018, 40(7), 1037−1048. https://doi.org/10.1007/s10529-018-2565-9
[23] Amirabadi, S.Sh.; Jahanmiri, A.; Rahimpour, M.R.; Rafienia, B.; Darvishi, P.; Niazi, A. Investigation of Paenibacillus alvei ARN63 Ability for Biodemulsifier Production: Medium Optimization to Break Heavy Crude Oil Emulsion. Colloids Surf. B 2013, 109, 244−252. https://doi.org/10.1016/j.colsurfb.2013.03.029
[24] Kang, W.; Yin, X.; Yang, H.; Zhao, Y.; Huang, Z.; Hou, X.; Sarsenbekuly, B.; Zhu, Z.; Wang, P.; Zhang, X. et al. Demulsification Performance, Behavior and Mechanism of Different Demulsifiers on the Light Crude Oil Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 197–204. https://doi.org/10.1016/j.colsurfa.2018.02.055
[25] Gurbanov, H.R.; Gasimzade, A.V. Research of the Impact of New Compositions on the Decomposition of Stable Water-Oil Emulsions of Heavy Oils. Voprosy Khimii i Khimicheskoi Tekhnologii 2022, 6, 19−28. https://doi.org/10.32434/0321-4095-2022-145-6-19-28
[26] Czarnecki, J.; Tchoukov, P.; Dabros, T.; Xu, Z. Role of Asphaltenes in Stabilization of Water in Crude Oil Emulsions. Can. J. Chem. Eng. 2013, 91(8), 1365−1371. https://doi.org/10.1002/cjce.21835
[27] Alves, C.A.; Yanes, J.F.R.; Feitosa, F.X.; de Sant’Ana, H.B. Influence of Asphaltenes and Resins on Water/Model Oil Interfacial Tension and Emulsion Behavior: Comparison of Extracted Fractions from Crude Oils with Different Asphaltene Stability. J. Pet. Sci. Eng. 2022, 208, Part E, 109268. https://doi.org/10.1016/j.petrol.2021.109268
[28] Zhang, X.; He, C.; Zhou, J.; Tian, Y.; He, L.; Sui, H.; Li, X. Demulsification of Water-in-Heavy Oil Emulsions by Oxygen-Enriched Non-Ionic Demulsifier: Synthesis, Characterization and Mechanisms. Fuel, 2023, 338, 127274. https://doi.org/10.1016/j.fuel.2022.127274
[29] Yao, X.; Hou, X.; Qi, G.; Zhang, R. Preparation of Superhydrophobic Polyimide Fibrous Membranes with Controllable Surface Structure for High Efficient Oil–Water Emulsion and Heavy Oil Separation. J. Environ. Chem. Eng. 2022, 10, 107470. https://doi.org/10.1016/j.jece.2022.107470
[30] Akbari, S.; Nour, A.H. Emulsion Types, Stability Mechanisms and Rheology: A review. Int. J. Innov. Res. Sci. Stud. 2018, 1, 11–17.
[31] Li, Y.; Chen, X.; Liu, Z.; Liu, R.; Liu, W.; Zhang, H. Effects of Molecular Structure of Polymeric Surfactant on Its Physico-Chemical Properties, Percolation and Enhanced Oil Recovery. J. Ind. Eng. Chem. 2021, 101, 165–177. https://doi.org/10.1016/j.jiec.2021.06.016
[32] Cao, C.; Gu, S.; Song, Z.; Xie, Z.; Chang, X.; Shen, P. The Viscosifying Behavior of W/O Emulsion and Its Underlying Mechanisms: Considering the Interfacial Adsorption of Heavy Components. Colloids Surf. A Physicochem. Eng. Asp. 2021, 632, 127794. https:// doi.org/10.1016/j.colsurfa.2021.127794
[33] Da Silva, M.; Sad, C.M.; Pereira, L.B.; Corona, R.R.; Bassane, J.F.; dos Santos, F.D.; Neto, D.M.; Silva, S.R.; Castro, E.V.; Filgueiras, P.R. Study of the Stability and Homogeneity of Water in Oil Emulsions of Heavy Oil. Fuel 2018, 226, 278–285. https://doi.org/10.1016/j.fuel.2018.04.011
[34] Griffith, C.; Daigle, H. A Comparison of the Static and Dynamic Stability of Pickering Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 586, 124256. https://doi.org/10.1016/j.colsurfa.2019.124256
[35] Sousa, A.M.; Matos, H.A.; Pereira, M.J. Properties of Crude Oil-in-Water and Water-in-Crude Oil Emulsions: A Critical Review. Ind. Eng. Chem. Res. 2021, 61, 1–20. https://doi.org/10.1021/acs.iecr.1c02744
[36] Wang, X.; Wang, F.; Taleb, M.A.M.; Wen, Z.; Chen, X. A Review of the Seepage Mechanisms of Heavy Oil Emulsions during Chemical Flooding. Energies 2022, 15(22), 8397. https://doi.org/10.3390/en15228397
[37] Zolfaghari, R.; Fakhru’l-Razi, A.; Abdullah, L.C.; Elnashaie, S.S.E.H.; Pendashteh, A. Demulsification Techniques of Water-in-Oil and Oil-in-Water Emulsions in Petroleum Industry. Sep. Purif. Technol. 2016, 170, 377–407. https://doi.org/10.1016/j.seppur.2016.06.026
[38] Hamdy, F.M.A.; Raouf, A.M.; Esmael, I.A.; Thuaban, L.H.; Ibraheem, N.F.; Yas, H.M.; Ali, M.T.; Salman, Z.S.A.D.; Jabir, N.A.A.; Yousif, T.N. Mimicking the Crude Oil and Heavy Fuel Oil (HFO) Demulsification Process in Power Plants for Preparing a New Demulsifiers. J. Pet. Res. Stud. 2020, 10(4), 165−180. https://doi.org/10.52716/jprs.v10i4.376
[39] Yazdanmehr, F.; Nistor, I. Demulsifier Selection for Water Separation from Heavy Crude Oil Emulsions of Iranian Oil Field. Romanian Journal of Petroleum & Gas Technology 2021, II(LXXIII), 62−72. https://doi.org/10.51865/JPGT.2021.01.06
[40] Kumar, S.; Rajput, V.S.; Mahto, V. Experimental Studies on Demulsification of Heavy Crude Oil-in-Water Emulsions by Chemicals, Heating, and Centrifuging. SPE Prod. Oper. 2021, 36(02), 375–386. https://doi.org/10.2118/204452-PA
[41] Atta, A.M.; Abdullah, M.M.S.; Al-Lohedan, H.A.; Ezzat, A.O. Demulsification of Heavy Crude Oil Using New Nonionic Cardanol Surfactants. J. Mol. Liq. 2018, 252, 311–320. https://doi.org/10.1016/j.molliq.2017.12.154
[42] Li, Z.; Geng, H.; Wang, X.; Jing, B.; Liu, Y.; Tan, Y. Noval Tannic Acid-Based Polyether as an Effective Demulsifier for Water-in-Aging Crude Oil Emulsions. Chem. Eng. J. 2018, 354, 1110–1119. https://doi.org/10.1016/j.cej.2018.08.117
[43] Souza, A.V.; Mendes, M.T.; Souza, S.T.S.; Palermo, L.C.M.; Oliveira, P.F.; Mansur, C.R.E. Synthesis of Additives Based on Polyethylenimine Modified with Non-ionic Surfactants for Application in Phase Separation of Water-in-Oil Emulsions. Energy Fuels 2017, 31, 10612–10619. https://doi.org/10.1021/acs.energyfuels.7b01730
[44] El-Sharaky, E.-S.A.; El-Tabey, A.E.; Mishrif, M.R. Novel Star Polymeric Nonionic Surfactants as Crude Oil Emulsion Breakers. J. Surfactants Deterg. 2019, 22, 779–793. https://doi.org/10.1002/jsde.12274
[45] Ma, J.; Li, X.; Zhang, X.; Sui, H.; He, L.; Wang, S. A Novel Oxygen-Containing Demulsifier for Efficient Breaking of Water-in-Oil Emulsions. Chem. Eng. J. 2020, 385, 123826. https://doi/org/10.1016/j.cej.2019.123826
[46] Xia, X.; Ma, J.; Geng, S.; Liu, F.; Yao, M. A Review of Oil-Solid Separation and Oil-Water Separation in Unconventional Heavy Oil Production Process. Int. J. Mol. Sci. 2022, 24(1), 74. https://doi.org/10.3390/ijms24010074
[47] Martínez-Palou, R.; Aburto, J. Ionic Liquids as Surfactants – Applications as Demulsifiers of Petroleum Emulsions. In Ionic Liquids - Current State of the Art; IntechOpen, 2015. https://doi.org/10.5772/59094
[48] Martínez-Palou, R.; Likhanova, N. . Application of ILs in the Breaking of Emulsions Found in the Oil Industry. pp. 58–74. https://doi.org/10.2174/9789815079579123010006. In Applications of Ionic Liquids in the Oil Industry: Towards A Sustainable Industry. 2023 https://doi.org/10.2174/97898150795791230101
[49] Aburto, J.; Marquez, D.M.; Navarro, J.C.; Martínez-Palou, R. Amphiphilic Choline Carboxylates Ionic Liquids as Demulsifiers of Water-in-Crude Oil Emulsions. Tenside, Surfactants, Deterg. 2014, 51, 314−317. https://doi.org/10.3139/113.110312
[50] Abdullah, M.M.S.; Al-Lohedan, H.A. Demulsification of Water in Heavy Crude Oil Emulsion Using a New Amphiphilic Ionic Liquid Based on the Glycolysis of Polyethylene Terephthalate Waste. J. Mol. Liq. 2020, 307, 112928. https://doi.org/10.1016/j.molliq.2020.112928
[51] Husain, A.; Adewunmi, A.A.; Kamal, M.S.; Mahmoud, M.; Al-Harthi, M.A. Demulsification of Heavy Petroleum Emulsion Using Pyridinium Ionic Liquids with Distinct Anion Branching. Energy Fuels 2021, 35(20), 16527−16533. https://doi.org/10.1021/acs.energyfuels.1c02286
[52] Dollah, A.; Bakar, N.A.; Othman, N.H.; Hussein, S.N.C.M.; Japperi, N.S. Effect of Magnetic Graphene Oxide on Heavy Oil Demulsification. Int. J. Integr. Eng. 2022, 14(5), 146−153. https://doi.org/10/30880/ijie.2022.14.05.017
[53] Adewunmi, A.A.; Kamal, M.S.; Gbadamosi, A.; Patil, S. Demulsification of Heavy Crude Oil Emulsion Driven by Natural Materials. Middle East Oil, Gas and Geosciences Show, Manama, Bahrain, February 2023. SPE-213624-MS https://doi.org/10.2118/213624-MS
[54] Ahmadi, S.; Khormali, A.; Khoutoriansky, F.M. Optimization of the Demulsification of Water-in-Heavy Crude Oil Emulsions Using Response Surface Methodology. Fuel, 2022, 323, 124270. https://doi.org/10.1016/j.fuel.2022.124270
[55] Huang, S.T.; He, X.; Chen, J.Q.; Wang, X.J.; Zhang, J.; Dong, J.Y.; Zhang, B.S. Study on the Performance of an Electric-Field-Enhanced Oil–Water Separator in Treating Heavy Oil with High Water Cut. J. Mar. Sci. Eng. 2022, 10, 1516. https://doi.org/10.3390/jmse10101516
[56] Zou, J.; Patiguli, Y.; Chen, J.; Alimila, A.; Zhao, B.; Hou J. Study on Demulsification Technology of Heavy Oil Blended in Xinjiang Oilfield. Processes 2023, 11(2), 409. https://doi.org/10.3390/pr11020409
[57] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15(3), 423−431. https://doi.org/10.23939/chcht15.03.423
[58] Yarmola, T.; Topilnytskyy, P.; Romanchuk V. High-Viscosity Crude Oil. A Review. Chem. Chem. Technol., 2023, 17(1), 195–202. https://doi.org/10.23939/chcht17.01.195
[59] da Silva, E.B.; Santos, D.; de Brito, M.P.; Guimarães, R.C.L.; Ferreira, B.M.S.; Freitas, L.S.; de Campos, M.C.V.; Franceschi, E.; Dariva, C.; Santos, A.F. et al. Microwave Demulsification of Heavy Crude Oil Emulsions: Analysis of Acid Species Recovered in the Aqueous Phase. Fuel, 2014, 128, 141−147. https://doi.org/10.1016/j.fuel.2014.02.076
[60] Martínez-Palou, R. Applications of Microwave for Breaking Petroleum Emulsions. Curr. Microw. Chem. 2017, 4, 276–276. https://doi.org/10.2174/2213335602999150921105652
[61] Zhang, S.G.; Zhang, J.H.; Zhang, Y.; Deng, Y.Q. Nanoconfined Ionic Liquids. Chem Rev. 2016, 117, 6755−6833. https://doi.org/10.1021/acs.chemrev.6b00509
[62] Alao, K.T.; Alara, O.R.; Abdurahman, N.H. Trending Approaches on Demulsification of Crude Oil in the Petroleum Industry. Appl. Petrochem. Res. 2021, 11, 281–293. https://doi.org/10.1007/s13203-021-00280-0
[63] Velázquez, H.D.; Guzmán-Lucero, D.; Martínez-Palou, R. Microwave-Assisted Demulsification for Oilfield Applications: A Critical Review. Taylor & Francis. Published online: March 21, 2022. https://doi.org/10.6084/m9.figshare.19390908.v1
[64] Abdulla, F.M.; Ali, M.R.; AL-Najar J.A.; Shaker N.A. Application of Microwave Heating in the Demulsification of Crude Oil Emulsions. Engineering and Technology Journal 2019, 37(1C), 79−83. https://doi.org/10.30684/ETJ.37.1C.12
[65] Santos, D.; da Rocha, E.C.L.; Santos, R.L.M.; Cancelas, A.J.; Franceschi, E.; Santos, A.F.; Fortuny, M.; Dariva, C. Demulsification of Water-in-Crude Oil Emulsions Using Single Mode and Multimode Microwave Irradiation. Sep. Purif. Technol. 2017, 189, 347−356. https://doi.org/10.1016/j.seppur.2017.08.028
[66] Maheshwari, D.; Anto, R.; Bhui, U.K. Demulsification of Water-in-Crude Oil Emulsion: An Experimental Approach for Reduction of Water Content of the Crude Oil for Refinery Use. Twelve International Conference on Thermal Engineering: Theory and Applications; February 23-26, 2019, Gandhinagar, India. https://journals.library.torontomu.ca/index.php/ictea/article/view/1216/...
[67] Abdurahman, N.H.; Yunus, R.M.; Azhari, N.H.; Said, N.; Hassan, Z. The Potential of Microwave Heating in Separating Water-in-Oil (w/o) Emulsions. Energy Procedia 2017, 138, 1023−1028. https://doi.org/10.1016/j.egypro.2017.10.123
[68] Sun, N.; Jiang, H.; Su, R.;, Zhang, L.; Shen, L.; Sun, H. Experimental Study on Synergistic Demulsification of Microwave-Magnetic Nanoparticles. ACS Omega 2022, 7(40), 35523−35531. https://doi.org/10.1021/acsomega.2c02226
[69] Wang, Z.; Gu, S.; Zhou, L. Research on the Static Experiment of Super Heavy Crude Oil Demulsification and Dehydration Using Ultrasonic Wave and Audible Sound Wave at High Temperatures. Ultrason. Sonochem. 2018, 40, Part A, 1014−1020. https://doi.org/10.1016/j.ultsonch.2017.08.037
[70] Yi, M.; Huang, J.; Wang, L. Research on Crude Oil Demulsification Using the Combined Method of Ultrasound and Chemical Demulsifier. J. Chem. 2017, 2017, Article ID 9147926. https://doi.org/10.1155/2017/9147926
[71] Chen, W-S.; Chen, Z-Y.; Chang, J.Y. Chen, C-Y.; Zeng, Y-P. Ultrasound-Assisted Desalination of Crude Oil: the Influence of Mixing Extent, Crude Oil Species, Chemical Demulsifier and Operation Variables. Ultrason. Sonochem. 2022, 83, 105947. https://doi.org/10.1016/j.ultsonch.2022.105947
[72] Hassanshahi, N.; Hu, G.; Lee, K.; Li, J. Effect of Ultrasonic Homogenization on Crude Oil-Water Emulsion Stability. J. Environ. Sci. Health A, 2023, 58(3), 211−221. https://doi.org/10.1080/10934529.2023.2178788
[73] Adeyemi, I.; Meribout, M.; Khezzar, L. Recent Developments, Challenges, and Prospects of Ultrasound-Assisted Oil Technologies. Ultrason. Sonochem. 2022, 82,105902. https://doi.org/10.1016/j.ultsonch.2021.105902
[74] Xu, X.; Cao, D.; Liu, J.; Gao, J.; Wang, X. Research on Ultrasound-Assisted Demulsification/Dehydration for Crude Oil. Ultrason. Sonochem. 2019, 57, 185−192. https://doi.org/10.1016/j.ultsonch.2019.05.024
[75] Atehortúa, C.M.G.; Pérez, N.; Andrade, M.A.B.; Pereira, L.O.V.; Adamowski, J.C. Water-in-Oil Emulsions Separation Using an Ultrasonic Standing Wavecoalescence Chamber. Ultrason. Sonochem. 2019, 57, 57−61. https://doi.org/10.1016/j.ultsonch.2019.04.043
[76] Sadatshojaie, A.; Wood, D.A.; Jokar, S.M.; Rahimpour, M.R. Applying Ultrasonic Fields to Separate Water Contained in Medium-Gravity Crude Oil Emulsions and Determining Crude Oil Adhesion Coefficients. Ultrason. Sonochem. 2021, 70, 105303. https://doi.org/10.1016/j.ultsonch.2020.105303
[77] Mohsin, M.; Meribout, M. Oil–Water De-Emulsification Using Ultrasonic Technology. Ultrason. Sonochem. 2015, 22, 573−579. https://doi.org/10.1016/j.ultsonch.2014.05.014
[78] Antes, F.G.; Diehl, L.O.; Pereira, J.S.F.; Guimarães, R.C.L.; Guarnieri, R.A.; Ferreira, B.M.S., Flores, E.M.M. Effect of Ultrasonic Frequency on Separation of Water from Heavy Crude Oil Emulsion Using Ultrasonic Baths. Ultrason. Sonochem. 2017, 35, Part B, 541−546. https://doi.org/10.1016/j.ultsonch.2016.03.031
[79] Abed, M.M.; Naife, T.M. Synthesis, Characterization, and Evaluation of an Eco-friendly Demulsifier for Crude Oil Emulsion Treatment Using Waste Corn Oil. Int. J. Eng. 2024, 37(3), 468−475. https://doi.org/10.5829/ije.2024.37.03c.03
[80] Karlapudi, A.P.; Venkateswarulu, T.C.; Tammineedi, J.; Kanumuri, L.; Ravuru, B.K.; Dirisala, V.R.; Kodali, V.P. Role of Biosurfactants in Bioremediation of Oil Pollution - A Review. Petroleum 2018, 4(3), 241−249. https://doi.org/10.1016/j.petlm.2018.03.007
[81] Vallejo-Cardona, A.A.; Martínez-Palou, R.; Chávez-Gómez, B.; García-Caloca, G.; Guerra-Camacho, J.; Cerón-Camacho, R. et al. Demulsification of Crude Oil-in-Water Emulsions by Means of Fungal Spores. PLoS ONE 2017, 12(2), e0170985. https://doi.org/10.1371/journal.pone.0170985