Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Demulsification Methods for Heavy Crude Oil Emulsions. A Review

Petro Topilnytskyy1, Maksym Shyshchak1, Volodymyr Skorokhoda1, Vasyl Torskyi1
Affiliation: 
1 Lviv Polytechnic National University, 12, Bandery St., 79013 Lviv, Ukraine topoil@lp.edu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.270
AttachmentSize
PDF icon full_text.pdf519.42 KB
Abstract: 
Demulsification (dehydration) is one of the most important problems in the oil industry. The peculiarity of heavy oil emulsions is their high stability since heavy crude contains a significant quantity of resins and asphaltenes. This paper provides an overview of the issue of heavy oil emulsion dehydration, emphasizing the importance of understanding their properties to develop appropriate demulsification methods. The use of environmentally friendly demulsifiers was an object of special attention. The analysis of ongoing research in this area would be useful for researches and engineers.
References: 

[1] Ezzat, A.O.; Atta, A.M.; Al-Lohedan, H.A. One-Step Synthesis of Amphiphilic Nonylphenol Polyethyleneimine for Demulsification of Water in Heavy Crude Oil Emulsions. ACS Omega 2020, 5(16), 9212–9223. https://doi.org/10.1021/acsomega.0c00002
[2] Abdulredha, M.M.; Aslina, H.S.; Luqman, C.A. Overview on Petroleum Emulsions, Formation, Influence and Demulsification Treatment Techniques. Arab. J. Chem. 2020, 13(1), 3403−3428. https://doi.org/10.1016/j.arabjc.2018.11.014
[3] Salam, K.; Alade, A.; Arinkoola, A.; Opawale, A. Improving the Demulsification Process of Heavy Crude Oil Emulsion through Blending with Diluent. J. Pet. Eng. 2013, Article ID 793101. https://doi.org/10.1155/2013/793101
[4] Raya, S.A.; Mohd Saaid, I.; Abbas Ahmed, A. et al. A critical review of development and demulsification mechanisms of crude oil emulsion in the petroleum industry. J. Pet. Explor. Prod. Technol. 2020, 10, 1711–1728. https://doi.org/10.1007/s13202-020-00830-7
[5] Fajun, Z.; Zhexi, T.; Zhongqi, Y.; Hongzhi, S.; Yanping, W.; Yufei, Z. Research Status and Analysis of Stabilization Mechanisms and Demulsification Methods of Heavy Oil Emulsions. Energy Sci. Eng. 2020 , 8(12), 4158−4177. https://doi.org/10.1002/ese3.814
[6] Yarmola, T.V.; Topilnytskyy, P.I., Skorokhoda, V.J.; Korchak B.O. Processing of Heavy High-Viscosity Oil Mixtures from the Eastern Region of Ukraine: Technological Aspects. Voprosy Khimii i Khimicheskoi Tekhnologii 2023, 1, 40−49. https://doi.org/10.32434/0321-4095-2023-146-1-40-49
[7] Lee, J.; Babadagli, T. Comprehensive Review on Heavy-Oil Emulsions: Colloid Science and Practical Applications, Chem. Eng. Sci. 2020, 228, 115962, https://doi.org/10.1016/j.ces.2020.115962
[8] Topilnytskyy, P.; Paiuk, S.; Stebelska, H.; Romanchuk, V.; Yarmola, T. Technological Features of High-Sulfur Heavy Crude Oils Processing. Chem. Chem. Technol. 2019, 13, 503−509. https://doi.org/10.23939/chcht13.04.503
[9] Faizullayev, S.; Adilbekova, A.; Kujawski, W.; Mirzaeian, M. Recent Demulsification Methods of Crude Oil Emulsions – Brief Review. J. Pet. Sci. Eng. 2022, 215, Part B, 110643. https://doi.org/10.1016/j.petrol.2022.110643
[10] Soliman, E. Flow of Heavy Oils at Low Temperatures: Potential Challenges and Solutions. In Processing of Heavy Crude Oils - Challenges and Opportunities; IntechOpen, 2019. https://doi.org/10.5772/intechopen.82286
[11] Zamora, E.B.; Hernández, E.I.; Zavala, G.; Fuentes, J.V.; Álvarez, F.; Flores, C.A.; Vázquez, F. High Performance Demulsifiers for Heavy Crude Oil Based on Alkyl Acrylic-Amino Alkyl Acrylic Random Bipolymers. Sep. Purif. Technol. 2021, 275, 119212. https://doi.org/10.1016/j.seppur.2021.119212
[12] Abed, S.M.; Abdurahman, N.H.; Yunus, R.M.; Abdulbari, H.A.; Akbari, S. Oil Emulsions and the Different Recent Demulsification Techniques in the Petroleum Industry - A Review. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 702, 012060; 1st ProSES Symposium, Kuantan, Pahang, Malaysia, September 4, 2019; https://doi.org/10.1088/1757-899X/702/1/012060
[13] Umar, A.A.; Saaid, I.B.M.; Sulaimon, A.A.; Pilus, R.B.M. A Review of Petroleum Emulsions and Recent Progress on Water-in-Crude Oil Emulsions Stabilized by Natural Surfactants and Solids. J. Pet. Sci. Eng. 2018, 165, 673−690. https://doi.org/10.1016/j.petrol.2018.03.014
[14] Saad, M.A.; Kamil, M.; Abdurahman, N.H.; Yunus, R.M.; Awad, O.I. An Overview of Recent Advances in State-of-the-Art Techniques in the Demulsification of Crude Oil Emulsions. Processes 2019, 7(7), 470. https://doi.org/10.3390/pr7070470
[15] Hadi, A.A.; Ali, A.A. A Review of Petroleum Emulsification Types, Formation Factors, and Demulsification Methods. Mater. Today Proc., 2022, 53, Part 1, 273–279. https://doi.org/10.1016/j.matpr.2022.01.091
[16] Abdulredha, M.M.; Hussain, S.A.; Abdullah, L.C.; Hong, T.L. Water-in-Oil Emulsion Stability and Demulsification via Surface-Active Compounds: A Review. J. Pet. Sci. Eng. 2022, 209, 109848. https://doi.org/10.1016/j.petrol.2021.109848
[17] Arab, D.; Kantzas, A.; Bryant, S.L. Nanoparticle Stabilized Oil in Water Emulsions: A Critical Review. J. Pet. Sci. Eng. 2018, 163, 217–242. https://doi.org/10.1016/j.petrol.2017.12.091
[18] Faisal, W.; Almomani, F. A Critical Review of the Development and Demulsification Processes Applied for Oil Recovery from Oil in Water Emulsions. Chemosphere 2022, 291, 133099. https://doi.org/10.1016/j.chemosphere.2021.133099
[19] Kilpatrick, P.K. Water-in-Crude Oil Emulsion Stabilization: Review and Unanswered Questions. Energy Fuels 2012, 26, 4017–4026. https://doi.org/10.1021/ef3003262
[20] Yao, L.; Selmi, A.; Esmaeili, H. A Review Study on New Aspects of Biodemulsifiers: Production, Features and their Application in Wastewater Treatment. Chemosphere, 2021, 284, 131364. https://doi.org/10.1016/j.chemosphere.2021.131364
[21] Zang, H.; Dai, Y.; Sun, Y.; Jia, T.; Song, Q.; Li, X.; Jiang, X.; Sui, D., Han, Z., Li, D. et al. Mechanism of the Biodemulsifier-Enhanced Biodegradation of Phenanthrene by Achromobacter sp. LH-1. Colloids Surf. B 2020, 195, 111253. https://doi.org/10.1016/j.colsurfb.2020.111253
[22] Sabati, H.; Motamedi, H. Ecofriendly Demulsification of Water in Oil Emulsions by an Efficient Biodemulsifier Producing Bacterium Isolated from Oil Contaminated Environment. Biotechnol. Lett. 2018, 40(7), 1037−1048. https://doi.org/10.1007/s10529-018-2565-9
[23] Amirabadi, S.Sh.; Jahanmiri, A.; Rahimpour, M.R.; Rafienia, B.; Darvishi, P.; Niazi, A. Investigation of Paenibacillus alvei ARN63 Ability for Biodemulsifier Production: Medium Optimization to Break Heavy Crude Oil Emulsion. Colloids Surf. B 2013, 109, 244−252. https://doi.org/10.1016/j.colsurfb.2013.03.029
[24] Kang, W.; Yin, X.; Yang, H.; Zhao, Y.; Huang, Z.; Hou, X.; Sarsenbekuly, B.; Zhu, Z.; Wang, P.; Zhang, X. et al. Demulsification Performance, Behavior and Mechanism of Different Demulsifiers on the Light Crude Oil Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 545, 197–204. https://doi.org/10.1016/j.colsurfa.2018.02.055
[25] Gurbanov, H.R.; Gasimzade, A.V. Research of the Impact of New Compositions on the Decomposition of Stable Water-Oil Emulsions of Heavy Oils. Voprosy Khimii i Khimicheskoi Tekhnologii 2022, 6, 19−28. https://doi.org/10.32434/0321-4095-2022-145-6-19-28
[26] Czarnecki, J.; Tchoukov, P.; Dabros, T.; Xu, Z. Role of Asphaltenes in Stabilization of Water in Crude Oil Emulsions. Can. J. Chem. Eng. 2013, 91(8), 1365−1371. https://doi.org/10.1002/cjce.21835
[27] Alves, C.A.; Yanes, J.F.R.; Feitosa, F.X.; de Sant’Ana, H.B. Influence of Asphaltenes and Resins on Water/Model Oil Interfacial Tension and Emulsion Behavior: Comparison of Extracted Fractions from Crude Oils with Different Asphaltene Stability. J. Pet. Sci. Eng. 2022, 208, Part E, 109268. https://doi.org/10.1016/j.petrol.2021.109268
[28] Zhang, X.; He, C.; Zhou, J.; Tian, Y.; He, L.; Sui, H.; Li, X. Demulsification of Water-in-Heavy Oil Emulsions by Oxygen-Enriched Non-Ionic Demulsifier: Synthesis, Characterization and Mechanisms. Fuel, 2023, 338, 127274. https://doi.org/10.1016/j.fuel.2022.127274
[29] Yao, X.; Hou, X.; Qi, G.; Zhang, R. Preparation of Superhydrophobic Polyimide Fibrous Membranes with Controllable Surface Structure for High Efficient Oil–Water Emulsion and Heavy Oil Separation. J. Environ. Chem. Eng. 2022, 10, 107470. https://doi.org/10.1016/j.jece.2022.107470
[30] Akbari, S.; Nour, A.H. Emulsion Types, Stability Mechanisms and Rheology: A review. Int. J. Innov. Res. Sci. Stud. 2018, 1, 11–17.
[31] Li, Y.; Chen, X.; Liu, Z.; Liu, R.; Liu, W.; Zhang, H. Effects of Molecular Structure of Polymeric Surfactant on Its Physico-Chemical Properties, Percolation and Enhanced Oil Recovery. J. Ind. Eng. Chem. 2021, 101, 165–177. https://doi.org/10.1016/j.jiec.2021.06.016
[32] Cao, C.; Gu, S.; Song, Z.; Xie, Z.; Chang, X.; Shen, P. The Viscosifying Behavior of W/O Emulsion and Its Underlying Mechanisms: Considering the Interfacial Adsorption of Heavy Components. Colloids Surf. A Physicochem. Eng. Asp. 2021, 632, 127794. https:// doi.org/10.1016/j.colsurfa.2021.127794
[33] Da Silva, M.; Sad, C.M.; Pereira, L.B.; Corona, R.R.; Bassane, J.F.; dos Santos, F.D.; Neto, D.M.; Silva, S.R.; Castro, E.V.; Filgueiras, P.R. Study of the Stability and Homogeneity of Water in Oil Emulsions of Heavy Oil. Fuel 2018, 226, 278–285. https://doi.org/10.1016/j.fuel.2018.04.011
[34] Griffith, C.; Daigle, H. A Comparison of the Static and Dynamic Stability of Pickering Emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 586, 124256. https://doi.org/10.1016/j.colsurfa.2019.124256
[35] Sousa, A.M.; Matos, H.A.; Pereira, M.J. Properties of Crude Oil-in-Water and Water-in-Crude Oil Emulsions: A Critical Review. Ind. Eng. Chem. Res. 2021, 61, 1–20. https://doi.org/10.1021/acs.iecr.1c02744
[36] Wang, X.; Wang, F.; Taleb, M.A.M.; Wen, Z.; Chen, X. A Review of the Seepage Mechanisms of Heavy Oil Emulsions during Chemical Flooding. Energies 2022, 15(22), 8397. https://doi.org/10.3390/en15228397
[37] Zolfaghari, R.; Fakhru’l-Razi, A.; Abdullah, L.C.; Elnashaie, S.S.E.H.; Pendashteh, A. Demulsification Techniques of Water-in-Oil and Oil-in-Water Emulsions in Petroleum Industry. Sep. Purif. Technol. 2016, 170, 377–407. https://doi.org/10.1016/j.seppur.2016.06.026
[38] Hamdy, F.M.A.; Raouf, A.M.; Esmael, I.A.; Thuaban, L.H.; Ibraheem, N.F.; Yas, H.M.; Ali, M.T.; Salman, Z.S.A.D.; Jabir, N.A.A.; Yousif, T.N. Mimicking the Crude Oil and Heavy Fuel Oil (HFO) Demulsification Process in Power Plants for Preparing a New Demulsifiers. J. Pet. Res. Stud. 2020, 10(4), 165−180. https://doi.org/10.52716/jprs.v10i4.376
[39] Yazdanmehr, F.; Nistor, I. Demulsifier Selection for Water Separation from Heavy Crude Oil Emulsions of Iranian Oil Field. Romanian Journal of Petroleum & Gas Technology 2021, II(LXXIII), 62−72. https://doi.org/10.51865/JPGT.2021.01.06
[40] Kumar, S.; Rajput, V.S.; Mahto, V. Experimental Studies on Demulsification of Heavy Crude Oil-in-Water Emulsions by Chemicals, Heating, and Centrifuging. SPE Prod. Oper. 2021, 36(02), 375–386. https://doi.org/10.2118/204452-PA
[41] Atta, A.M.; Abdullah, M.M.S.; Al-Lohedan, H.A.; Ezzat, A.O. Demulsification of Heavy Crude Oil Using New Nonionic Cardanol Surfactants. J. Mol. Liq. 2018, 252, 311–320. https://doi.org/10.1016/j.molliq.2017.12.154
[42] Li, Z.; Geng, H.; Wang, X.; Jing, B.; Liu, Y.; Tan, Y. Noval Tannic Acid-Based Polyether as an Effective Demulsifier for Water-in-Aging Crude Oil Emulsions. Chem. Eng. J. 2018, 354, 1110–1119. https://doi.org/10.1016/j.cej.2018.08.117
[43] Souza, A.V.; Mendes, M.T.; Souza, S.T.S.; Palermo, L.C.M.; Oliveira, P.F.; Mansur, C.R.E. Synthesis of Additives Based on Polyethylenimine Modified with Non-ionic Surfactants for Application in Phase Separation of Water-in-Oil Emulsions. Energy Fuels 2017, 31, 10612–10619. https://doi.org/10.1021/acs.energyfuels.7b01730
[44] El-Sharaky, E.-S.A.; El-Tabey, A.E.; Mishrif, M.R. Novel Star Polymeric Nonionic Surfactants as Crude Oil Emulsion Breakers. J. Surfactants Deterg. 2019, 22, 779–793. https://doi.org/10.1002/jsde.12274
[45] Ma, J.; Li, X.; Zhang, X.; Sui, H.; He, L.; Wang, S. A Novel Oxygen-Containing Demulsifier for Efficient Breaking of Water-in-Oil Emulsions. Chem. Eng. J. 2020, 385, 123826. https://doi/org/10.1016/j.cej.2019.123826
[46] Xia, X.; Ma, J.; Geng, S.; Liu, F.; Yao, M. A Review of Oil-Solid Separation and Oil-Water Separation in Unconventional Heavy Oil Production Process. Int. J. Mol. Sci. 2022, 24(1), 74. https://doi.org/10.3390/ijms24010074
[47] Martínez-Palou, R.; Aburto, J. Ionic Liquids as Surfactants – Applications as Demulsifiers of Petroleum Emulsions. In Ionic Liquids - Current State of the Art; IntechOpen, 2015. https://doi.org/10.5772/59094
[48] Martínez-Palou, R.; Likhanova, N. . Application of ILs in the Breaking of Emulsions Found in the Oil Industry. pp. 58–74. https://doi.org/10.2174/9789815079579123010006. In Applications of Ionic Liquids in the Oil Industry: Towards A Sustainable Industry. 2023 https://doi.org/10.2174/97898150795791230101
[49] Aburto, J.; Marquez, D.M.; Navarro, J.C.; Martínez-Palou, R. Amphiphilic Choline Carboxylates Ionic Liquids as Demulsifiers of Water-in-Crude Oil Emulsions. Tenside, Surfactants, Deterg. 2014, 51, 314−317. https://doi.org/10.3139/113.110312
[50] Abdullah, M.M.S.; Al-Lohedan, H.A. Demulsification of Water in Heavy Crude Oil Emulsion Using a New Amphiphilic Ionic Liquid Based on the Glycolysis of Polyethylene Terephthalate Waste. J. Mol. Liq. 2020, 307, 112928. https://doi.org/10.1016/j.molliq.2020.112928
[51] Husain, A.; Adewunmi, A.A.; Kamal, M.S.; Mahmoud, M.; Al-Harthi, M.A. Demulsification of Heavy Petroleum Emulsion Using Pyridinium Ionic Liquids with Distinct Anion Branching. Energy Fuels 2021, 35(20), 16527−16533. https://doi.org/10.1021/acs.energyfuels.1c02286
[52] Dollah, A.; Bakar, N.A.; Othman, N.H.; Hussein, S.N.C.M.; Japperi, N.S. Effect of Magnetic Graphene Oxide on Heavy Oil Demulsification. Int. J. Integr. Eng. 2022, 14(5), 146−153. https://doi.org/10/30880/ijie.2022.14.05.017
[53] Adewunmi, A.A.; Kamal, M.S.; Gbadamosi, A.; Patil, S. Demulsification of Heavy Crude Oil Emulsion Driven by Natural Materials. Middle East Oil, Gas and Geosciences Show, Manama, Bahrain, February 2023. SPE-213624-MS https://doi.org/10.2118/213624-MS
[54] Ahmadi, S.; Khormali, A.; Khoutoriansky, F.M. Optimization of the Demulsification of Water-in-Heavy Crude Oil Emulsions Using Response Surface Methodology. Fuel, 2022, 323, 124270. https://doi.org/10.1016/j.fuel.2022.124270
[55] Huang, S.T.; He, X.; Chen, J.Q.; Wang, X.J.; Zhang, J.; Dong, J.Y.; Zhang, B.S. Study on the Performance of an Electric-Field-Enhanced Oil–Water Separator in Treating Heavy Oil with High Water Cut. J. Mar. Sci. Eng. 2022, 10, 1516. https://doi.org/10.3390/jmse10101516
[56] Zou, J.; Patiguli, Y.; Chen, J.; Alimila, A.; Zhao, B.; Hou J. Study on Demulsification Technology of Heavy Oil Blended in Xinjiang Oilfield. Processes 2023, 11(2), 409. https://doi.org/10.3390/pr11020409
[57] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15(3), 423−431. https://doi.org/10.23939/chcht15.03.423
[58] Yarmola, T.; Topilnytskyy, P.; Romanchuk V. High-Viscosity Crude Oil. A Review. Chem. Chem. Technol., 2023, 17(1), 195–202. https://doi.org/10.23939/chcht17.01.195
[59] da Silva, E.B.; Santos, D.; de Brito, M.P.; Guimarães, R.C.L.; Ferreira, B.M.S.; Freitas, L.S.; de Campos, M.C.V.; Franceschi, E.; Dariva, C.; Santos, A.F. et al. Microwave Demulsification of Heavy Crude Oil Emulsions: Analysis of Acid Species Recovered in the Aqueous Phase. Fuel, 2014, 128, 141−147. https://doi.org/10.1016/j.fuel.2014.02.076
[60] Martínez-Palou, R. Applications of Microwave for Breaking Petroleum Emulsions. Curr. Microw. Chem. 2017, 4, 276–276. https://doi.org/10.2174/2213335602999150921105652
[61] Zhang, S.G.; Zhang, J.H.; Zhang, Y.; Deng, Y.Q. Nanoconfined Ionic Liquids. Chem Rev. 2016, 117, 6755−6833. https://doi.org/10.1021/acs.chemrev.6b00509
[62] Alao, K.T.; Alara, O.R.; Abdurahman, N.H. Trending Approaches on Demulsification of Crude Oil in the Petroleum Industry. Appl. Petrochem. Res. 2021, 11, 281–293. https://doi.org/10.1007/s13203-021-00280-0
[63] Velázquez, H.D.; Guzmán-Lucero, D.; Martínez-Palou, R. Microwave-Assisted Demulsification for Oilfield Applications: A Critical Review. Taylor & Francis. Published online: March 21, 2022. https://doi.org/10.6084/m9.figshare.19390908.v1
[64] Abdulla, F.M.; Ali, M.R.; AL-Najar J.A.; Shaker N.A. Application of Microwave Heating in the Demulsification of Crude Oil Emulsions. Engineering and Technology Journal 2019, 37(1C), 79−83. https://doi.org/10.30684/ETJ.37.1C.12
[65] Santos, D.; da Rocha, E.C.L.; Santos, R.L.M.; Cancelas, A.J.; Franceschi, E.; Santos, A.F.; Fortuny, M.; Dariva, C. Demulsification of Water-in-Crude Oil Emulsions Using Single Mode and Multimode Microwave Irradiation. Sep. Purif. Technol. 2017, 189, 347−356. https://doi.org/10.1016/j.seppur.2017.08.028
[66] Maheshwari, D.; Anto, R.; Bhui, U.K. Demulsification of Water-in-Crude Oil Emulsion: An Experimental Approach for Reduction of Water Content of the Crude Oil for Refinery Use. Twelve International Conference on Thermal Engineering: Theory and Applications; February 23-26, 2019, Gandhinagar, India. https://journals.library.torontomu.ca/index.php/ictea/article/view/1216/...
[67] Abdurahman, N.H.; Yunus, R.M.; Azhari, N.H.; Said, N.; Hassan, Z. The Potential of Microwave Heating in Separating Water-in-Oil (w/o) Emulsions. Energy Procedia 2017, 138, 1023−1028. https://doi.org/10.1016/j.egypro.2017.10.123
[68] Sun, N.; Jiang, H.; Su, R.;, Zhang, L.; Shen, L.; Sun, H. Experimental Study on Synergistic Demulsification of Microwave-Magnetic Nanoparticles. ACS Omega 2022, 7(40), 35523−35531. https://doi.org/10.1021/acsomega.2c02226
[69] Wang, Z.; Gu, S.; Zhou, L. Research on the Static Experiment of Super Heavy Crude Oil Demulsification and Dehydration Using Ultrasonic Wave and Audible Sound Wave at High Temperatures. Ultrason. Sonochem. 2018, 40, Part A, 1014−1020. https://doi.org/10.1016/j.ultsonch.2017.08.037
[70] Yi, M.; Huang, J.; Wang, L. Research on Crude Oil Demulsification Using the Combined Method of Ultrasound and Chemical Demulsifier. J. Chem. 2017, 2017, Article ID 9147926. https://doi.org/10.1155/2017/9147926
[71] Chen, W-S.; Chen, Z-Y.; Chang, J.Y. Chen, C-Y.; Zeng, Y-P. Ultrasound-Assisted Desalination of Crude Oil: the Influence of Mixing Extent, Crude Oil Species, Chemical Demulsifier and Operation Variables. Ultrason. Sonochem. 2022, 83, 105947. https://doi.org/10.1016/j.ultsonch.2022.105947
[72] Hassanshahi, N.; Hu, G.; Lee, K.; Li, J. Effect of Ultrasonic Homogenization on Crude Oil-Water Emulsion Stability. J. Environ. Sci. Health A, 2023, 58(3), 211−221. https://doi.org/10.1080/10934529.2023.2178788
[73] Adeyemi, I.; Meribout, M.; Khezzar, L. Recent Developments, Challenges, and Prospects of Ultrasound-Assisted Oil Technologies. Ultrason. Sonochem. 2022, 82,105902. https://doi.org/10.1016/j.ultsonch.2021.105902
[74] Xu, X.; Cao, D.; Liu, J.; Gao, J.; Wang, X. Research on Ultrasound-Assisted Demulsification/Dehydration for Crude Oil. Ultrason. Sonochem. 2019, 57, 185−192. https://doi.org/10.1016/j.ultsonch.2019.05.024
[75] Atehortúa, C.M.G.; Pérez, N.; Andrade, M.A.B.; Pereira, L.O.V.; Adamowski, J.C. Water-in-Oil Emulsions Separation Using an Ultrasonic Standing Wavecoalescence Chamber. Ultrason. Sonochem. 2019, 57, 57−61. https://doi.org/10.1016/j.ultsonch.2019.04.043
[76] Sadatshojaie, A.; Wood, D.A.; Jokar, S.M.; Rahimpour, M.R. Applying Ultrasonic Fields to Separate Water Contained in Medium-Gravity Crude Oil Emulsions and Determining Crude Oil Adhesion Coefficients. Ultrason. Sonochem. 2021, 70, 105303. https://doi.org/10.1016/j.ultsonch.2020.105303
[77] Mohsin, M.; Meribout, M. Oil–Water De-Emulsification Using Ultrasonic Technology. Ultrason. Sonochem. 2015, 22, 573−579. https://doi.org/10.1016/j.ultsonch.2014.05.014
[78] Antes, F.G.; Diehl, L.O.; Pereira, J.S.F.; Guimarães, R.C.L.; Guarnieri, R.A.; Ferreira, B.M.S., Flores, E.M.M. Effect of Ultrasonic Frequency on Separation of Water from Heavy Crude Oil Emulsion Using Ultrasonic Baths. Ultrason. Sonochem. 2017, 35, Part B, 541−546. https://doi.org/10.1016/j.ultsonch.2016.03.031
[79] Abed, M.M.; Naife, T.M. Synthesis, Characterization, and Evaluation of an Eco-friendly Demulsifier for Crude Oil Emulsion Treatment Using Waste Corn Oil. Int. J. Eng. 2024, 37(3), 468−475. https://doi.org/10.5829/ije.2024.37.03c.03
[80] Karlapudi, A.P.; Venkateswarulu, T.C.; Tammineedi, J.; Kanumuri, L.; Ravuru, B.K.; Dirisala, V.R.; Kodali, V.P. Role of Biosurfactants in Bioremediation of Oil Pollution - A Review. Petroleum 2018, 4(3), 241−249. https://doi.org/10.1016/j.petlm.2018.03.007
[81] Vallejo-Cardona, A.A.; Martínez-Palou, R.; Chávez-Gómez, B.; García-Caloca, G.; Guerra-Camacho, J.; Cerón-Camacho, R. et al. Demulsification of Crude Oil-in-Water Emulsions by Means of Fungal Spores. PLoS ONE 2017, 12(2), e0170985. https://doi.org/10.1371/journal.pone.0170985