Розкриття сталого розвитку: всебічний огляд переробки відходів біомаси на біовугілля для екологічних рішень
Attachment | Size |
---|---|
full_text.pdf | 651.94 KB |
[1] Jayakumar, M.; Hamda, A. S.; Abo, L. D.; Daba, B. J.; Venkatesa Prabhu, S.; Rangaraju, M.; Jabesa, A.; Periyasamy, S.; Suresh, S.; Baskar, G. Comprehensive Review on Lignocellulosic Biomass Derived Biochar Production, Characterization, Utilization and Applications. Chemosphere 2023, 345, 140515. https://doi.org/10.1016/j.chemosphere.2023.140515
[2] Rawat, S.; Wang, C. T.; Lay, C. H.; Hotha, S.; Bhaskar, T. Sustainable Biochar for Advanced Electrochemical/Energy Storage Applications. J Energy Storage 2023, 63, 107115. https://doi.org/10.1016/j.est.2023.107115
[3] Khiari, B.; Jeguirim, M.; Limousy, L.; Bennici, S. Biomass Derived Chars for Energy Applications. Renew. Sustain. Energy Rev. 2019, 108, 253–273. https://doi.org/10.1016/j.rser.2019.03.057
[4] Liu, W. J.; Jiang, H.; Yu, H. Q. Emerging Applications of Biochar-Based Materials for Energy Storage and Conversion. Energy Environ Sci 2019, 12, 1751–1779. https://doi.org/10.1039/c9ee00206e
[5] Igalavithana, A. D.; You, S.; Zhang, L.; Shang, J.; Lehmann, J.; Wang, X.; Zhu, Y. G.; Tsang, D. C. W.; Park, Y. K.; Hou, D.; et al. Progress, Barriers, and Prospects for Achieving a “Hydrogen Society” and Opportunities for Biochar Technology. ACS ES and T Engineering 2022, 2, 1987–2001. https://doi.org/10.1021/acsestengg.1c00510
[6] Sawalha, H.; Bader, A.; Sarsour, J.; Al-Jabari, M.; Rene, E. R. Removal of Dye (Methylene Blue) from Wastewater Using Bio-Char Derived from Agricultural Residues in Palestine: Performance and Isotherm Analysis. Processes 2022, 10, 2039. https://doi.org/10.3390/pr10102039
[7] Nguyen, T.H.; Nguyen, X.C.; Nguyen, D.L.T.; Nguyen, D.D.; Vo, T.Y.B.; Vo, N.Q.; Nguyen, T.D.; Viet, L.; Ngo, H.H.; Vo, D.-V. N.; et al. Converting Biomass of Agrowastes and Invasive Plant into Alternative Materials for Water Remediation. Biomass Convers Biorefin 2023, 13, 5391-5406. https://link.springer.com/article/10.1007/s13399-021-01526-6
[8] del Pozo, C.; Rego, F.; Yang, Y.; Puy, N.; Bartrolí, J.; Fàbregas, E.; Bridgwater, A. V. Converting Coffee Silverskin to Value-Added Products by a Slow Pyrolysis-Based Biorefinery Process. Fuel Process Technol 2021, 214, 106708. https://doi.org/10.1016/j.fuproc.2020.106708
[9] Appiah-Ntiamoah, R.; Tilahun, K. M.; Mengesha, D. N.; Weldesemat, N. T.; Ruello, J. L.; Egualle, F. K.; Ganje, P.; Kim, H. Carbonyl-Interfaced-Biochar Derived from Unique Capillary Structures via One-Step Carbonization with Selective Methyl Blue Adsorption Capability. J Clean Prod 2023, 410, 137291. https://doi.org/10.1016/j.jclepro.2023.137291
[10] Chen, L.; Mi, B.; He, J.; Li, Y.; Zhou, Z.; Wu, F. Functionalized Biochars with Highly-Efficient Malachite Green Adsorption Property Produced from Banana Peels via Microwave-Assisted Pyrolysis. Bioresour Technol 2023, 376, 128840. https://doi.org/10.1016/j.biortech.2023.128840
[11] Shukla, S.; Khan, R.; Srivastava, M. M.; Zahmatkesh, S. Valorization of Waste Watermelon Rinds as a Bio-Adsorbent for Efficient Removal of Methylene Blue Dye from Aqueous Solutions. Appl Biochem Biotechnol 2023. https://doi.org/10.1007/s12010-023-04448-3 (accessed: 2023-12-01).
[12] Pinky, N. S.; Bin Mobarak, M.; Mustafi, S.; Zesanur Rahman, M.; Nahar, A.; Saha, T.; Mohammed Bahadur, N. Facile Preparation of Micro-Porous Biochar from Bangladeshi Sprouted Agricultural Waste (Corncob) via in-House Built Heating Chamber for Cationic Dye Removal. Arab J Chem 2023, 16, 105080. https://doi.org/10.1016/j.arabjc.2023.105080
[13] Ogunlusi, G. O.; Amos, O. D.; Olatunji, O. F.; Adenuga, A. A. Equilibrium, Kinetic, and Thermodynamic Studies of the Adsorption of Anionic and Cationic Dyes from Aqueous Solution Using Agricultural Waste Biochar. J Iran Chem Soc 2023, 20, 817–830. https://doi.org/10.1007/s13738-022-02721-6
[14] Nithyalakshmi, B.; Saraswathi, R. Removal of Colorants from Wastewater Using Biochar Derived from Leaf Waste. Biomass Convers Biorefin 2023, 13, 1311–1327. https://doi.org/10.1007/s13399-021-01776-4
[15] Xiang, W.; Zhang, X.; Chen, J.; Zou, W.; He, F.; Hu, X.; Tsang, D. C. W.; Ok, Y. S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. https://doi.org/10.1016/j.chemosphere.2020.126539
[16] Dudziak, M.; Werle, S.; Marszałek, A.; Sobek, S.; Magdziarz, A. Comparative Assessment of the Biomass Solar Pyrolysis Biochars Combustion Behavior and Zinc Zn(II) Adsorption. Energy 2022, 261, 125360. https://doi.org/10.1016/j.energy.2022.125360
[17] Kaya, N.; Arslan, F.; Yildiz Uzun, Z. Production and Characterization of Carbon-Based Adsorbents from Waste Lignocellulosic Biomass: Their Effectiveness in Heavy Metal Removal. Fuller Nanotub 2020, 28, 769–780. https://doi.org/10.1080/1536383X.2020.1759556
[18] Ramana, K. V.; Mohan, K. C.; Ravindhranath, K.; Babu, B. H. Bio-Sorbent Derived from Annona Squamosa for the Removal of Methyl Red Dye in Polluted Waters: A Study on Adsorption Potential. Chem. Chem. Technol. 2022, 16, 274–283. https://doi.org/10.23939/chcht16.02.274
[19] Abdul Jabbar, M. F.; Rashid, S. A.; Naife, T. M. Adsorption of Zinc and Iron Ions From Aqueous Solution Using Waste Material as Adsorbent. Chem. Chem. Technol. 2023, 17, 887–893. https://doi.org/10.23939/chcht17.04.887
[20] Sinha, R.; Kumar, R.; Sharma, P.; Kant, N.; Shang, J.; Aminabhavi, T. M. Removal of Hexavalent Chromium via Biochar-Based Adsorbents: State-of-the-Art, Challenges, and Future Perspectives. J Environ Manage 2022, 317, 115356. https://doi.org/10.1016/j.jenvman.2022.115356
[21] Hama Aziz, K. H.; Kareem, R. Recent Advances in Water Remediation from Toxic Heavy Metals Using Biochar as a Green and Efficient Adsorbent: A Review. Case Stud Chem Environ Eng 2023, 8, 100495. https://doi.org/10.1016/j.cscee.2023.100495
[22] Mukbaniani, O.; Brostow, W.; Aneli, J.; Londaridze, L.; Markarashvili, E.; Tatrishvili, T.; Gencel, O. Wood Sawdust Plus Silylated Styrene Composites with Low Water Absorption. Chem. Chem. Technol. 2022, 16, 377–386. https://doi.org/10.23939/chcht16.03.377
[23] Yuan, Z.; Sun, X.; Hua, J.; Zhu, Y.; Yuan, J.; Qiu, F. Upcycling Watermelon Peel Waste into a Sustainable Environment-Friendly Biochar for Assessment of Effective Adsorption Property. Arab J Sci Eng 2023, 48, 9035–9045. https://doi.org/10.1007/s13369-022-07397-x
[24] Nguyen, T. H.; Loganathan, P.; Nguyen, T. V.; Vigneswaran, S.; Ha Nguyen, T. H.; Tran, H. N.; Nguyen, Q. B. Arsenic Removal by Pomelo Peel Biochar Coated with Iron. Chem Eng Res Des 2022, 186, 252–265. https://doi.org/10.1016/j.cherd.2022.07.022
[25] Van Hien, N.; Valsami-Jones, E.; Vinh, N. C.; Phu, T. T.; Tam, N. T. T.; Lynch, I. Effectiveness of Different Biochar in Aqueous Zinc Removal: Correlation with Physicochemical Characteristics. Bioresour Technol Rep 2020, 11, 100466. https://doi.org/10.1016/j.biteb.2020.100466
[26] Kaya, N.; Arslan, F.; Uzun, Z. Y.; Ceylan, S. Kinetic and Thermodynamic Studies on the Adsorption of Cu2 Ions from Aqueous Solution by Using Agricultural Waste-Derived Biochars. Water Sci Technol Water Supply 2020, 20, 3120–3140. https://doi.org/10.2166/ws.2020.193
[27] Bacirhonde, P. M.; Dzade, N. Y.; Eya, H. I.; Kim, C. S.; Park, C. H. A Potential Peanut Shell Feedstock Pyrolyzed Biochar and Iron-Modified Peanut Shell Biochars for Heavy Metal Fixation in Acid Mine Drainage. ACS Earth Space Chem 2022, 6, 2651–2665. https://doi.org/10.1021/acsearthspacechem.2c00185
[28] Švábová, M.; Bičáková, O.; Vorokhta, M. Biochar as an Effective Material for Acetone Sorption and the Effect of Surface Area on the Mechanism of Sorption. J Environ Manage 2023, 348, 119205. https://doi.org/10.1016/j.jenvman.2023.119205
[29] Zhuang, Z.; Wang, L.; Tang, J. Efficient Removal of Volatile Organic Compound by Ball-Milled Biochars from Different Preparing Conditions. J Hazard Mater 2021, 406, 124676. https://doi.org/10.1016/j.jhazmat.2020.124676
[30] Park, S.; Lee, J.-I.; Na, C.-K.; Kim, D.; Kim, J.-J.; Kim, D.-Y. Evaluation of the Adsorption Performance and Thermal Treatment-Associated Regeneration of Adsorbents for Formaldehyde Removal. J Air Waste Manage Assoc 2023, 74, 131–144. https://doi.org/10.1080/10962247.2023.2292205
[31] Vikrant, K.; Kim, K. H.; Peng, W.; Ge, S.; Sik Ok, Y. Adsorption Performance of Standard Biochar Materials against Volatile Organic Compounds in Air: A Case Study Using Benzene and Methyl Ethyl Ketone. Chem Eng J 2020, 387, 123943. https://doi.org/10.1016/j.cej.2019.123943
[32] Kua, H. W.; Pedapati, C.; Lee, R. V.; Kawi, S. Effect of Indoor Contamination on Carbon Dioxide Adsorption of Wood-Based Biochar – Lessons for Direct Air Capture. J Clean Prod 2019, 210, 860–871. https://doi.org/10.1016/j.jclepro.2018.10.206
[33] Igalavithana, A. D.; Choi, S. W.; Dissanayake, P. D.; Shang, J.; Wang, C. H.; Yang, X.; Kim, S.; Tsang, D. C. W.; Lee, K. B.; Ok, Y. S. Gasification Biochar from Biowaste (Food Waste and Wood Waste) for Effective CO2 Adsorption. J Hazard Mater 2020, 391, 121147. https://doi.org/10.1016/j.jhazmat.2019.121147
[34] Gbangbo, K. R.; Kouakou, A. R.; Ehouman, A. D.; Yao, B.; Goli Lou, G. V. E.; Gnaboa, Z.; Bailly, G. C. Influence of Water Content on Hydrogen Sulfide Adsorption in Biogas Purification with Musa Paradisiaca Biochar. Chem Afr 2023, 6, 657–665. https://doi.org/10.1007/s42250-023-00610-w
[35] Wuri, M. A.; Pertiwiningrum, A.; Budiarto, R.; Gozan, M.; Harto, A. W. The Waste Recycling of Sugarcane Bagasse-Based Biochar for Biogas Purification. IOP Conf Ser Earth Environ Sci 2021, 940, 012029. https://doi.org/10.1088/1755-1315/940/1/012029
[36] Lee, J. T. E.; Ok, Y. S.; Song, S.; Dissanayake, P. D.; Tian, H.; Tio, Z. K.; Cui, R.; Lim, E. Y.; Jong, M. C.; Hoy, S. H.; et. al. Biochar Utilisation in the Anaerobic Digestion of Food Waste for the Creation of a Circular Economy via Biogas Upgrading and Digestate Treatment. Bioresour Technol 2021, 333, 125190. https://doi.org/10.1016/j.biortech.2021.125190
[37] Khan, A.; Szulejko, J. E.; Samaddar, P.; Kim, K. H.; Liu, B.; Maitlo, H. A.; Yang, X.; Ok, Y. S. The Potential of Biochar as Sorptive Media for Removal of Hazardous Benzene in Air. Chem Eng J 2019, 361, 1576–1585. https://doi.org/10.1016/j.cej.2018.10.193
[38] Ran, Q.; Liu, K.; Du, Y.; Liu, C.; Fang, L.; Li, F. Integration with Carbon Capture Technology Enables a Positive Carbon Balance for Sustainable Rice Paddy Remediation with Calcium silicon Composites. Sci Total Environ 2024, 912, 169034. https://doi.org/10.1016/j.scitotenv.2023.169034
[39] Sadegh, F.; Sadegh, N.; Wongniramaikul, W.; Apiratikul, R.; Choodum, A. Adsorption of Volatile Organic Compounds on Biochar: A Review. Process Saf Environ 2024, 182, 559–578. https://doi.org/10.1016/j.psep.2023.11.071
[40] Dissanayake, P. D.; You, S.; Igalavithana, A. D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H. W.; Kim, S.; Kwon, J. H.; Tsang, D. C. W.; Ok, Y. S. Biochar-Based Adsorbents for Carbon Dioxide Capture: A Critical Review. Renew Sust Energ Rev 2020, 119, 109582. https://doi.org/10.1016/j.rser.2019.109582
[41] Zhao, J.; Li, Y.; Dong, R. Recent Progress towards In-Situ Biogas Upgrading Technologies. Sci Total Environ 2021, 800, 149667. https://doi.org/10.1016/j.scitotenv.2021.149667
[42] Notton, G.; Nivet, M. L.; Voyant, C.; Paoli, C.; Darras, C.; Motte, F.; Fouilloy, A. Intermittent and Stochastic Character of Renewable Energy Sources: Consequences, Cost of Intermittence and Benefit of Forecasting. Renew Sust Energ Rev 2018, 87, 96–105. https://doi.org/10.1016/j.rser.2018.02.007
[43] Wang, D.; Liu, N.; Chen, F.; Wang, Y.; Mao, J. Progress and Prospects of Energy Storage Technology Research: Based on Multidimensional Comparison. J Energy Storage 2024, 75, 109710. https://doi.org/10.1016/j.est.2023.109710
[44] Adetokun, B. B.; Oghorada, O.; Abubakar, S. J. afar. Superconducting Magnetic Energy Storage Systems: Prospects and Challenges for Renewable Energy Applications. J Energy Storage 2022, 55, 105663. https://doi.org/10.1016/j.est.2022.105663
[45] Toyota. Toyota Mirai 2023 Brochure; 2023. https://www.toyota.com/content/dam/toyota/brochures/pdf/2023/mirai_ebroc... (accessed: 2023-12-01).
[46] Moradi, R.; Groth, K. M. Hydrogen Storage and Delivery: Review of the State of the Art Technologies and Risk and Reliability Analysis. Int J Hydrogen Energy 2019, 44, 12254–12269. https://doi.org/10.1016/j.ijhydene.2019.03.041
[47] US Department of Energy. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydr... (accessed: 2023-12-01).
[48] Tarhan, C.; Çil, M. A. A Study on Hydrogen, the Clean Energy of the Future: Hydrogen Storage Methods. J Energy Storage 2021, 40, 102676. https://doi.org/10.1016/j.est.2021.102676
[49] Abe, J. O.; Popoola, A. P. I.; Ajenifuja, E.; Popoola, O. M. Hydrogen Energy, Economy and Storage: Review and Recommendation. Int J Hydrogen Energy 2019, 44, 15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068
[50] Czarna-Juszkiewicz, D.; Cader, J.; Wdowin, M. From Coal Ashes to Solid Sorbents for Hydrogen Storage. J Clean Prod 2020, 270, 122355. https://doi.org/10.1016/j.jclepro.2020.122355
[51] Erdogan, F. O. Freundlich, Langmuir, Temkin and Harkins-Jura Isotherms Studies of H2 Adsorption on Porous Adsorbents. Chem. Chem. Technol. 2019, 13, 129–135. https://doi.org/10.23939/chcht13.02.129
[52] Saldan, I.; Stetsiv, Y.; Makogon, V.; Kovalyshyn, Y.; Yatsyshyn, M.; Reshetnyak, O. Physical Sorption of Molecular Hydrogen by Microporous Organic Polymers. Chem. Chem. Technol. 2019, 13, 85–94. https://doi.org/10.23939/chcht13.01.085
[53] Chen, Z.; Kirlikovali, K. O.; Idrees, K. B.; Wasson, M. C.; Farha, O. K. Porous Materials for Hydrogen Storage. Chem 2022, 8, 693–716. https://doi.org/10.1016/j.chempr.2022.01.012
[54] Desai, F. J.; Uddin, M. N.; Rahman, M. M.; Asmatulu, R. A Critical Review on Improving Hydrogen Storage Properties of Metal Hydride via Nanostructuring and Integrating Carbonaceous Materials. Int J Hydrogen Energy 2023, 48, 29256–29294. https://doi.org/10.1016/j.ijhydene.2023.04.029
[55] Boateng, E.; Chen, A. Recent Advances in Nanomaterial-Based Solid-State Hydrogen Storage. Mater Today Adv 2020, 6, 100022. https://doi.org/10.1016/j.mtadv.2019.100022
[56] Blankenship, T. S.; Balahmar, N.; Mokaya, R. Oxygen-Rich Microporous Carbons with Exceptional Hydrogen Storage Capacity. Nat Commun 2017, 8, 1545. https://doi.org/10.1038/s41467-017-01633-x
[57] Deng, L.; Zhao, Y.; Sun, S.; Feng, D.; Zhang, W. Preparation of Corn Straw-Based Carbon by “Carbonization-KOH Activation” Two-Step Method: Gas–Solid Product Characteristics, Activation Mechanism and Hydrogen Storage Potential. Fuel 2024, 358, 130134. https://doi.org/10.1016/j.fuel.2023.130134
[58] Deng, L.; Zhao, Y.; Sun, S.; Feng, D.; Zhang, W. Thermochemical Method for Controlling Pore Structure to Enhance Hydrogen Storage Capacity of Biochar. Int J Hydrogen Energy 2023, 48, 21799–21813. https://doi.org/10.1016/j.ijhydene.2023.03.084
[59] Hu, W.; Li, Y.; Zheng, M.; Xiao, Y.; Dong, H.; Liang, Y.; Hu, H.; Liu, Y. Degradation of Biomass Components to Prepare Porous Carbon for Exceptional Hydrogen Storage Capacity. Int J Hydrogen Energy 2021, 46, 5418–5426. https://doi.org/10.1016/j.ijhydene.2020.11.015
[60] Hirscher, M.; Zhang, L.; Oh, H. Nanoporous Adsorbents for Hydrogen Storage. Appl Phys A Mater Sci Process 2023, 129, 1–10. https://doi.org/10.1007/s00339-023-06397-4
[61] Broom, D. P.; Webb, C. J.; Fanourgakis, G. S.; Froudakis, G. E.; Trikalitis, P. N.; Hirscher, M. Concepts for Improving Hydrogen Storage in Nanoporous Materials. Int J Hydrogen Energy 2019, 44, 7768–7779. https://doi.org/10.1016/j.ijhydene.2019.01.224
[62] Huang, J.; Liang, Y.; Dong, H.; Hu, H.; Yu, P.; Peng, L.; Zheng, M.; Xiao, Y.; Liu, Y. Revealing Contribution of Pore Size to High Hydrogen Storage Capacity. Int J Hydrogen Energy 2018, 43, 18077–18082. https://doi.org/10.1016/j.ijhydene.2018.08.027
[63] Geng, Z.; Zhang, C.; Wang, D.; Zhou, X.; Cai, M. Pore Size Effects of Nanoporous Carbons with Ultra-High Surface Area on High-Pressure Hydrogen Storage. J Energy Chem 2015, 24, 1–8. https://doi.org/10.1016/S2095-4956(15)60277-7
[64] Farha, O. K.; Yazaydin, A. Ö.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T. De Novo Synthesis of a Metal-Organic Framework Material Featuring Ultrahigh Surface Area and Gas Storage Capacities. Nat Chem 2010, 2, 944–948. https://doi.org/10.1038/nchem.834
[65] Chen, Z.; Li, P.; Anderson, R.; Wang, X.; Zhang, X.; Robison, L.; Redfern, L. R.; Moribe, S.; Islamoglu, T.; Gómez-Gualdrón, D. A.; Yildirim, T.; Stoddart, J. F.; Farha, O. K. Balancing Volumetric and Gravimetric Uptake in Highly Porous Materials for Clean Energy. Science 2020, 368, 297–303. https://doi.org/10.1126/science.aaz8881
[66] Morandé, A.; Lillo, P.; Blanco, E.; Pazo, C.; Dongil, A. B.; Zarate, X.; Saavedra-Torres, M.; Schott, E.; Canales, R.; Videla, A.; Escalona, N. Modification of a Commercial Activated Carbon with Nitrogen and Boron: Hydrogen Storage Application. J Energy Storage 2023, 64, 107193. https://doi.org/10.1016/j.est.2023.107193
[67] Rossetti, I.; Ramis, G.; Gallo, A.; Di Michele, A. Hydrogen Storage over Metal-Doped Activated Carbon. Int J Hydrogen Energy 2015, 40, 7609–7616. https://doi.org/10.1016/j.ijhydene.2015.04.064.
[68] Yeboah, M. L.; Li, X.; Zhou, S. Facile Fabrication of Biochar from Palm Kernel Shell Waste and Its Novel Application to Magnesium-Based Materials for Hydrogen Storage. Materials 2020, 13, 625. https://doi.org/10.3390/ma13030625
[69] Zhang, J.; Hou, Q.; Guo, X.; Yang, X. Modified MgH2 Hydrogen Storage Properties Based on Grapefruit Peel-Derived Biochar. Catalysts 2022, 12, 517. https://doi.org/10.3390/catal12050517
[70] Rawat, S.; Boobalan, T.; Krishna, B. B.; Sathish, M.; Hotha, S.; Bhaskar, T. Biochar for Supercapacitor Application: A Comparative Study. Chem Asian J 2022, 17, e202200982. https://doi.org/10.1002/asia.202200982
[71] Lu, B.; Hu, L.; Yin, H.; Xiao, W.; Wang, D. One-Step Molten Salt Carbonization (MSC) of Firwood Biomass for Capacitive Carbon. RSC Adv 2016, 6, 106485–106490. https://doi.org/10.1039/c6ra22191b
[72] Raymundo‐Piñero, E.; Cadek, M.; Béguin, F. Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds. Adv Funct Mater 2009, 19, 1032–1039. https://doi.org/10.1002/adfm.200801057
[73] Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. From Dead Leaves to High Energy Density Supercapacitors. Energy Environ Sci 2013, 6, 1249–1259. https://doi.org/10.1039/c3ee22325f
[74] Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H. First-Principles Study of Alkali Metal-Graphite Intercalation Compounds. J Power Sources 2013, 243, 585–587. https://doi.org/10.1016/j.jpowsour.2013.06.057
[75] Shao, W.; Shi, H.; Jian, X.; Wu, Z. S.; Hu, F. Hard-Carbon Anodes for Sodium-Ion Batteries: Recent Status and Challenging Perspectives. Advanced Energy and Sustainability Research 2022, 3, 2200009. https://doi.org/10.1002/aesr.202200009
[76] Yang, Y.; Wu, C.; He, X.; Zhao, J.; Yang, Z.; Li, L.; Wu, X.; Li, L.; Chou, S. Boosting the Development of Hard Carbon for Sodium‐Ion Batteries: Strategies to Optimize the Initial Coulombic Efficiency. Adv Funct Mater 2023, 34, 2302277. https://doi.org/10.1002/adfm.202302277
[77] Chu, Y.; Zhang, J.; Zhang, Y.; Li, Q.; Jia, Y.; Dong, X.; Xiao, J.; Tao, Y.; Yang, Q. Reconfiguring Hard Carbons with Emerging Sodium‐Ion Batteries: A Perspective. Adv Mater 2023, 35, 2212186. https://doi.org/10.1002/adma.202212186
[78] Wang, P.; Fan, L.; Yan, L.; Shi, Z. Low-Cost Water Caltrop Shell-Derived Hard Carbons with High Initial Coulombic Efficiency for Sodium-Ion Battery Anodes. J Alloys Compd 2019, 775, 1028–1035. https://doi.org/10.1016/j.jallcom.2018.10.180
[79] Gomez-Martin, A.; Martinez-Fernandez, J.; Ruttert, M.; Winter, M.; Placke, T.; Ramirez-Rico, J. Correlation of Structure and Performance of Hard Carbons as Anodes for Sodium Ion Batteries. Chem Mater 2019, 31, 7288–7299. https://doi.org/10.1021/acs.chemmater.9b01768
[80] Tang, Z.; Zhou, S.; Huang, Y.; Wang, H.; Zhang, R.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. Electrochem Energy Rev 2023, 6, 8. https://doi.org/10.1007/s41918-022-00178-y
[81] Wan, Y.; Liu, Y.; Chao, D.; Li, W.; Zhao, D. Recent Advances in Hard Carbon Anodes with High Initial Coulombic Efficiency for Sodium-Ion Batteries. Nano Mater Sci 2023, 5, 189–201. https://doi.org/10.1016/j.nanoms.2022.02.001
[82] Tang, Z.; Zhang, R.; Wang, H.; Zhou, S.; Pan, Z.; Huang, Y.; Sun, D.; Tang, Y.; Ji, X.; Amine, K.; Shao, M. Revealing the Closed Pore Formation of Waste Wood-Derived Hard Carbon for Advanced Sodium-Ion Battery. Nat Commun 2023, 14, 6024. https://doi.org/10.1038/s41467-023-39637-5
[83] Zhou, S.; Tang, Z.; Pan, Z.; Huang, Y.; Zhao, L.; Zhang, X.; Sun, D.; Tang, Y.; Dhmees, A. S.; Wang, H. Regulating Closed Pore Structure Enables Significantly Improved Sodium Storage for Hard Carbon Pyrolyzing at Relatively Low Temperature. SusMat 2022, 2, 357–367. https://doi.org/10.1002/sus2.60
[84] Jing, W.; Wang, M.; Li, Y.; Li, H. R.; Zhang, H.; Hu, S.; Wang, H.; He, Y. B. Pore Structure Engineering of Wood-Derived Hard Carbon Enables Their High-Capacity and Cycle-Stable Sodium Storage Properties. Electrochim Acta 2021, 391, 139000. https://doi.org/10.1016/j.electacta.2021.139000
[85] Asfaw, H. D.; Gond, R.; Kotronia, A.; Tai, C. W.; Younesi, R. Bio-Derived Hard Carbon Nanosheets with High Rate Sodium-Ion Storage Characteristics. Sustain Mater Technol 2022, 32, e00407. https://doi.org/10.1016/j.susmat.2022.e00407
[86] Zhu, Y.; Chen, M.; Li, Q.; Yuan, C.; Wang, C. A Porous Biomass-Derived Anode for High-Performance Sodium-Ion Batteries. Carbon 2018, 129, 695–701. https://doi.org/10.1016/j.carbon.2017.12.103
[87] Patel, A.; Mishra, R.; Tiwari, R. K.; Tiwari, A.; Meghnani, D.; Singh, S. K.; Singh, R. K. Sustainable and Efficient Energy Storage: A Sodium Ion Battery Anode from Aegle Marmelos Shell Biowaste. J Energy Storage 2023, 72, 108424. https://doi.org/10.1016/j.est.2023.108424
[88] Wang, Q.; Zhu, X.; Liu, Y.; Fang, Y.; Zhou, X.; Bao, J. Rice Husk-Derived Hard Carbons as High-Performance Anode Materials for Sodium-Ion Batteries. Carbon 2018, 127, 658–666. https://doi.org/10.1016/j.carbon.2017.11.054
[89] Rybarczyk, M. K.; Li, Y.; Qiao, M.; Hu, Y. S.; Titirici, M. M.; Lieder, M. Hard Carbon Derived from Rice Husk as Low Cost Negative Electrodes in Na-Ion Batteries. J Energy Chem 2019, 29, 17–22. https://doi.org/10.1016/j.jechem.2018.01.025
[90] Yu, K.; Wang, X.; Yang, H.; Bai, Y.; Wu, C. Insight to Defects Regulation on Sugarcane Waste-Derived Hard Carbon Anode for Sodium-Ion Batteries. J Energy Chem 2021, 55, 499–508. https://doi.org/10.1016/j.jechem.2020.07.025
[91] Zhang, N.; Liu, Q.; Chen, W.; Wan, M.; Li, X.; Wang, L.; Xue, L.; Zhang, W. High Capacity Hard Carbon Derived from Lotus Stem as Anode for Sodium Ion Batteries. J Power Sources 2018, 378, 331–337. https://doi.org/10.1016/j.jpowsour.2017.12.054
[92] Wu, F.; Zhang, M.; Bai, Y.; Wang, X.; Dong, R.; Wu, C. Lotus Seedpod-Derived Hard Carbon with Hierarchical Porous Structure as Stable Anode for Sodium-Ion Batteries. ACS Appl Mater Interfaces 2019, 11, 12554–12561. https://doi.org/10.1021/acsami.9b01419
[93] Rao, Y. B.; Saisrinu, Y.; Khatua, S.; Bharathi, K. K.; Patro, L. N. Nitrogen Doped Soap-Nut Seeds Derived Hard Carbon as an Efficient Anode Material for Na-Ion Batteries. J Alloys Compd 2023, 968, 171917. https://doi.org/10.1016/j.jallcom.2023.171917
[94] Medina, A.; Alcántara, R.; Tirado, J. L. A Facile Procedure to Improve the Performance of Food-Waste-Derived Carbons in Sodium-Ion Batteries. J Energy Storage 2023, 72, 1–9. https://doi.org/10.1016/j.est.2023.108768
[95] Wei, H.; Cheng, H.; Yao, N.; Li, G.; Du, Z.; Luo, R.; Zheng, Z. Invasive Alien Plant Biomass-Derived Hard Carbon Anode for Sodium-Ion Batteries. Chemosphere 2023, 343, 140220. https://doi.org/10.1016/j.chemosphere.2023.140220
[96] Kitsu Iglesias, L.; Antonio, E. N.; Martinez, T. D.; Zhang, L.; Zhuo, Z.; Weigand, S. J.; Guo, J.; Toney, M. F. Revealing the Sodium Storage Mechanisms in Hard Carbon Pores. Adv Energy Mater 2023, 13, 2302171. https://doi.org/10.1002/aenm.202302171
[97] Yu, Y.; Ren, Z.; Shang, Q.; Han, J.; Li, L.; Chen, J.; Fakudze, S.; Tian, Z.; Liu, C. Ionic Liquid-Induced Low Temperature Graphitization of Cellulose-Derived Biochar for High Performance Sodium Storage. Surf Coat Technol 2021, 412, 127034. https://doi.org/10.1016/j.surfcoat.2021.127034
[98] Sun, D.; Luo, B.; Wang, H.; Tang, Y.; Ji, X.; Wang, L. Engineering the Trap Effect of Residual Oxygen Atoms and Defects in Hard Carbon Anode towards High Initial Coulombic Efficiency. Nano Energy 2019, 64, 103937. https://doi.org/10.1016/j.nanoen.2019.103937
[99] Pan, J.; Ma, J.; Liu, X.; Zhai, L.; Ouyang, X.; Liu, H. Effects of Different Types of Biochar on the Anaerobic Digestion of Chicken Manure. Bioresour Technol 2019, 275, 258–265. https://doi.org/10.1016/j.biortech.2018.12.068
[100] Zhao, W.; Yang, H.; He, S.; Zhao, Q.; Wei, L. A Review of Biochar in Anaerobic Digestion to Improve Biogas Production: Performances, Mechanisms and Economic Assessments. Bioresour Technol 2021, 341, 125797. https://doi.org/10.1016/j.biortech.2021.125797
[101] Zhang, M.; Wang, Y. Effects of Fe-Mn-Modified Biochar Addition on Anaerobic Digestion of Sewage Sludge: Biomethane Production, Heavy Metal Speciation and Performance Stability. Bioresour Technol 2020, 313, 123695. https://doi.org/10.1016/j.biortech.2020.123695
[102] Li, J.; Zhang, M.; Ye, Z.; Yang, C. Effect of Manganese Oxide-Modified Biochar Addition on Methane Production and Heavy Metal Speciation during the Anaerobic Digestion of Sewage Sludge. J Environ Sci (China) 2019, 76, 267–277. https://doi.org/10.1016/j.jes.2018.05.009
[103] Cheng, D.; Ngo, H. H.; Guo, W.; Chang, S. W.; Nguyen, D. D.; Nguyen, Q. A.; Zhang, J.; Liang, S. Improving Sulfonamide Antibiotics Removal from Swine Wastewater by Supplying a New Pomelo Peel Derived Biochar in an Anaerobic Membrane Bioreactor. Bioresour Technol 2021, 319,124160. https://doi.org/10.1016/j.biortech.2020.124160
[104] Sugiarto, Y.; Sunyoto, N. M. S.; Zhu, M.; Jones, I.; Zhang, D. Effect of Biochar in Enhancing Hydrogen Production by Mesophilic Anaerobic Digestion of Food Wastes: The Role of Minerals. Int J Hydrogen Energy 2021, 46, 3695–3703. https://doi.org/10.1016/j.ijhydene.2020.10.256
[105] Sakhiya, A. K.; Anand, A.; Kaushal, P. Production, Activation, and Applications of Biochar in Recent Times. Biochar 2020, 2, 253–285. https://doi.org/10.1007/s42773-020-00047-1
[106] Li, M.; Zheng, Y.; Chen, Y.; Zhu, X. Biodiesel Production from Waste Cooking Oil Using a Heterogeneous Catalyst from Pyrolyzed Rice Husk. Bioresour Technol 2014, 154, 345–348. https://doi.org/10.1016/j.biortech.2013.12.070
[107] Bazargan, A.; Kostić, M. D.; Stamenković, O. S.; Veljković, V. B.; McKay, G. A Calcium Oxide-Based Catalyst Derived from Palm Kernel Shell Gasification Residues for Biodiesel Production. Fuel 2015, 150, 519–525. https://doi.org/10.1016/j.fuel.2015.02.046
[108] Awasthi, M. K.; Wang, Q.; Chen, H.; Wang, M.; Awasthi, S. K.; Ren, X.; Cai, H.; Li, R.; Zhang, Z. In-Vessel Co-Composting of Biosolid: Focusing on Mitigation of Greenhouse Gases Emissions and Nutrients Conservation. Renew Energy 2018, 129, 814–823. https://doi.org/10.1016/j.renene.2017.02.068
[109] Senthilkumar, N.; Pannipara, M.; Al-Sehemi, A. G.; Gnana Kumar, G. PEDOT/NiFe2O4 Nanocomposites on Biochar as a Free-Standing Anode for High-Performance and Durable Microbial Fuel Cells. New J Chem 2019, 43, 7743–7750. https://doi.org/10.1039/c9nj00638a
[110] Senthilkumar, K.; Naveenkumar, & M. Enhanced Performance Study of Microbial Fuel Cell Using Waste Biomass-Derived Carbon Electrode. Biomass Convers Biorefin 2023, 13, 5921–5929. https://doi.org/10.1007/s13399-021-01505-x
[111] Yuan, H.; Deng, L.; Qi, Y.; Kobayashi, N.; Tang, J. Nonactivated and Activated Biochar Derived from Bananas as Alternative Cathode Catalyst in Microbial Fuel Cells. Sci World J 2014, 2014, 832850. https://doi.org/10.1155/2014/832850
[112] Dong, J.; Wu, Y.; Wang, C.; Lu, H.; Li, Y. Three-Dimensional Electrodes Enhance Electricity Generation and Nitrogen Removal of Microbial Fuel Cells. Bioprocess Biosyst Eng 2020, 43, 2165–2174. https://doi.org/10.1007/s00449-020-02402-9
[113] Nganda, A.; Srivastava, P.; Lamba, B. Y.; Pandey, A.; Kumar, M. Advances in the Fabrication, Modification, and Performance of Biochar, Red Mud, Calcium Oxide, and Bentonite Catalysts in Waste-to-Fuel Conversion. Environ Res 2023, 232, 116284. https://doi.org/10.1016/j.envres.2023.116284
[114] Ramos, R.; Abdelkader‐fernández, V. K.; Matos, R.; Peixoto, A. F.; Fernandes, D. M. Metal‐Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis and Energy Storage Applications: A Review. Catalysts 2022, 12, 207. https://doi.org/10.3390/catal12020207
[115] Zou, R.; Qian, M.; Wang, C.; Mateo, W.; Wang, Y.; Dai, L.; Lin, X.; Zhao, Y.; Huo, E.; Wang, L.; Zhang, X.; Kong, X.; Ruan, R.; Lei, H. Biochar: From by-Products of Agro-Industrial Lignocellulosic Waste to Tailored Carbon-Based Catalysts for Biomass Thermochemical Conversions. Chem Eng J 2022, 441, 135972. https://doi.org/10.1016/j.cej.2022.135972
[116] Wang, S.; Li, H.; Wu, M. Advances in Metal/ Biochar Catalysts for Biomass Hydro-Upgrading: A Review. J Clean Prod 2021, 303, 126825. https://doi.org/10.1016/j.jclepro.2021.126825
[117] Lyu, H.; Zhang, Q.; Shen, B. Application of Biochar and Its Composites in Catalysis. Chemosphere 2020, 240, 124842. https://doi.org/10.1016/j.chemosphere.2019.124842
[118] Du, Z. Y.; Zhang, Z. H.; Xu, C.; Wang, X. B.; Li, W. Y. Lowerature Steam Reforming of Toluene and Biomass Tar over Biochar-Supported Ni Nanoparticles. ACS Sustain Chem Eng 2019, 7, 3111–3119. https://doi.org/10.1021/acssuschemeng.8b04872
[119] Wang, Y.; Huang, L.; Zhang, T.; Wang, Q. Hydrogen-Rich Syngas Production from Biomass Pyrolysis and Catalytic Reforming Using Biochar-Based Catalysts. Fuel 2022, 313, 123006. https://doi.org/10.1016/j.fuel.2021.123006
[120] Yang, G.; Hu, Q.; Hu, J.; Yang, H.; Yan, S.; Chen, Y.; Wang, X.; Chen, H. Hydrogen-Rich Syngas Production from Biomass Gasification Using Biochar-Based Nanocatalysts. Bioresour Technol 2023, 379, 129005. https://doi.org/10.1016/j.biortech.2023.129005
[121] Liu, H.; Meng, H.; Shen, Y.; Feng, J.; Cong, H.; Shen, X.; Xing, H.; Song, W.; Li, J.; Ge, Y. International Journal of Hydrogen Energy Investigation into Application of Biochar as a Catalyst during Pyrolysis-Catalytic Reforming of Rice Husk : The Role of K Specie and Steam in Upgrading Syngas Quality. Int J Hydrogen Energy 2024, 55, 14–25. https://doi.org/10.1016/j.ijhydene.2023.10.113
[122] Ren, J.; Liu, Y. L. Direct Conversion of Syngas Produced from Steam Reforming of Toluene into Methane over a Ni/Biochar Catalyst. ACS Sustain Chem Eng 2021, 9, 11212–11222. https://doi.org/10.1021/acssuschemeng.1c03497
[123] Yang, H.; Cui, Y.; Jin, Y.; Lu, X.; Han, T.; Sandström, L.; Jönsson, P. G.; Yang, W. Evaluation of Engineered Biochar-Based Catalysts for Syngas Production in a Biomass Pyrolysis and Catalytic Reforming Process. Energ Fuel 2023, 37, 5942–5952. https://doi.org/10.1021/acs.energyfuels.3c00410
[124] Tian, B.; Dong, K.; Guo, F.; Mao, S.; Bai, J.; Shu, R.; Qian, L.; Liu, Q. Catalytic Conversion of Toluene as a Biomass Tar Model Compound Using Monolithic Biochar-Based Catalysts Decorated with Carbon Nanotubes and Graphic Carbon Covered Co-Ni Alloy Nanoparticles. Fuel 2022, 324, 124585. https://doi.org/10.1016/j.fuel.2022.124585
[125] Zeng, C.; Jiang, Y.; Xu, R.; Han, L.; Zhang, X. Phenols-Enriched Biofuel and H2-Rich Gas from Catalytic Fast Pyrolysis/Gasification of Agricultural Biomass over a Novel Heavy Metals-Containing Livestock Manure Biochar Catalyst. J Anal Appl Pyrolysis 2022, 167, 105680. https://doi.org/10.1016/j.jaap.2022.105680
[126] Han, L.; Zhang, B.; Chen, L.; Feng, Y.; Yang, Y.; Sun, K. Impact of Biochar Amendment on Soil Aggregation Varied with Incubation Duration and Biochar Pyrolysis Temperature. Biochar 2021, 3, 339–347. https://doi.org/10.1007/s42773-021-00097-z
[127] Hien, T. T. T.; Tsubota, T.; Taniguchi, T.; Shinogi, Y. Enhancing Soil Water Holding Capacity and Provision of a Potassium Source via Optimization of the Pyrolysis of Bamboo Biochar. Biochar 2021, 3, 51–61. https://doi.org/10.1007/s42773-020-00071-1
[128] Chang, Y.; Rossi, L.; Zotarelli, L.; Gao, B.; Shahid, M. A.; Sarkhosh, A. Biochar Improves Soil Physical Characteristics and Strengthens Root Architecture in Muscadine Grape (Vitis Rotundifolia L.). Chem Biol Technol Agric 2021, 8, 1–11. https://doi.org/10.1186/s40538-020-00204-5
[129] Han, Z.; Xu, P.; Li, Z.; Lin, H.; Zhu, C.; Wang, J.; Zou, J. Microbial Diversity and the Abundance of Keystone Species Drive the Response of Soil Multifunctionality to Organic Substitution and Biochar Amendment in a Tea Plantation. GCB Bioenergy 2022, 14, 481–495. https://doi.org/10.1111/GCBB.12926
[130] Dey, S.; Purakayastha, T. J.; Sarkar, B.; Rinklebe, J.; Kumar, S.; Chakraborty, R.; Datta, A.; Lal, K.; Shivay, Y. S. Enhancing Cation and Anion Exchange Capacity of Rice Straw Biochar by Chemical Modification for Increased Plant Nutrient Retention. Sci Total Environ 2023, 886, 163681. https://doi.org/10.1016/J.SCITOTENV.2023.163681
[131] Chen, C.; Zhu, H.; Lv, Q.; Tang, Q. Impact of Biochar on Red Paddy Soil Physical and Hydraulic Properties and Rice Yield over 3 Years. J Soils Sediments 2022, 22, 607–616. https://doi.org/10.1007/s11368-021-03090-y
[132] Egamberdieva, D.; Alaylar, B.; Kistaubayeva, A.; Wirth, S.; Bellingrath-Kimura, S. D. Biochar for Improving Soil Biological Properties and Mitigating Salt Stress in Plants on Salt-Affected Soils. Commun Soil Sci Plant Anal 2022, 53, 140–152. https://doi.org/10.1080/00103624.2021.1993884
[133] Zheng, J.; Luan, L.; Luo, Y.; Fan, J.; Xu, Q.; Sun, B.; Jiang, Y. Biochar and Lime Amendments Promote Soil Nitrification and Nitrogen Use Efficiency by Differentially Mediating Ammonia-Oxidizer Community in an Acidic Soil. Appl Soil Ecol 2022, 180, 104619. https://doi.org/10.1016/J.APSOIL.2022.104619
[134] Pouangam Ngalani, G.; Dzemze Kagho, F.; Peguy, N. N. C.; Prudent, P.; Ondo, J. A.; Ngameni, E. Effects of Coffee Husk and Cocoa Pods Biochar on the Chemical Properties of an Acid Soil from West Cameroon. Arch Agron Soil Sci 2023, 69, 744–758. https://doi.org/10.1080/03650340.2022.2033733
[135] Poveda, J.; Martínez-Gómez, Á.; Fenoll, C.; Escobar, C. The Use of Biochar for Plant Pathogen Control. Phytopathology 2021, 111, 1490–1499. https://doi.org/10.1094/PHYTO-06-20-0248-RVW
[136] Wang, K.; Hou, J.; Zhang, S.; Hu, W.; Yi, G.; Chen, W.; Cheng, L.; Zhang, Q. Preparation of a New Biochar-Based Microbial Fertilizer: Nutrient Release Patterns and Synergistic Mechanisms to Improve Soil Fertility. Sci Total Environ 2023, 860, 160478. https://doi.org/10.1016/j.scitotenv.2022.160478
[137] Bolan, S.; Hou, D.; Wang, L.; Hale, L.; Egamberdieva, D.; Tammeorg, P.; Li, R.; Wang, B.; Xu, J.; Wang, T.; Sun, H.; Padhye, L. P.; Wang, H.; Siddique, K. H. M.; Rinklebe, J.; Kirkham, M. B.; Bolan, N. The Potential of Biochar as a Microbial Carrier for Agricultural and Environmental Applications. Sci Total Environ 2023, 886, 163968. https://doi.org/10.1016/j.scitotenv.2023.163968
[138] Nobile, C.; Lebrun, M.; Védère, C.; Honvault, N.; Aubertin, M. L.; Faucon, M. P.; Girardin, C.; Houot, S.; Kervroëdan, L.; Dulaurent, A. M.; Rumpel, C.; Houben, D. Biochar and Compost Addition Increases Soil Organic Carbon Content and Substitutes P and K Fertilizer in Three French Cropping Systems. Agron Sustain Dev 2022, 42, 1–15. https://doi.org/10.1007/s13593-022-00848-7
[139] Labanya, R.; Srivastava, P. C.; Pachauri, S. P.; Shukla, A. K.; Shrivastava, M.; Srivastava, P. Valorisation of Phyto-Biochars as Slow Release Micronutrients and Sulphur Carrier for Agriculture. Environ Technol 2023, 44, 2431–2440. https://doi.org/10.1080/09593330.2022.2029953
[140] Nsubuga, D.; Kabenge, I.; Zziwa, A.; Yiga, V. A.; Mpendo, Y.; Harbert, M.; Kizza, R.; Banadda, N.; Wydra, K. D. Optimization of Adsorbent Dose and Contact Time for the Production of Jackfruit Waste Nutrient-Enriched Biochar. Waste Dispos Sustain Energy 2023, 5, 63–74. https://doi.org/10.1007/s42768-022-00123-1
[141] Skrzypczak, D.; Szopa, D.; Mikula, K.; Izydorczyk, G.; Baśladyńska, S.; Hoppe, V.; Pstrowska, K.; Wzorek, Z.; Kominko, H.; Kułażyński, M.; Moustakas, K.; Chojnacka, K.; Witek – Krowiak, A. Tannery Waste-Derived Biochar as a Carrier of Micronutrients Essential to Plants. Chemosphere 2022, 294, 133720. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133720
[142] Mustaffa, M. R. A. F.; Pandian, K.; Chitraputhirapillai, S.; Kuppusamy, S.; Dhanushkodi, K. Synthesis of Biochar-Embedded Slow-Release Nitrogen Fertilizers: Mesocosm and Field Scale Evaluation for Nitrogen Use Efficiency, Growth and Rice Yield. Soil Use Manag 2023, 40, e12959. https://doi.org/10.1111/SUM.12959
[143] Rashid, M.; Hussain, Q.; Hayat, R.; Ahmad, M.; Azeem, M.; Alvi, S.; Chaudhry, A. N.; Masood, S.; Khalid, R.; Jehan, S.; Rehman, O. ur. Deashed Biochar as N-Carrier Extended the N-Release by Inhibiting N-Losses in Calcareous Soils. Biomass Convers Biorefin 2023, 13, 9549–9564. https://doi.org/10.1007/s13399-023-04250-5
[144] Zhao, C.; Xu, J.; Bi, H.; Shang, Y.; Shao, Q. A Slow-Release Fertilizer of Urea Prepared via Biochar-Coating with Nano-SiO2-Starch-Polyvinyl Alcohol: Formulation and Release Simulation. Environ Technol Innov 2023, 32, 103264. https://doi.org/10.1016/J.ETI.2023.103264
[145] Patel, A. K.; Singhania, R. R.; Pal, A.; Chen, C. W.; Pandey, A.; Dong, C. Di. Advances on Tailored Biochar for Bioremediation of Antibiotics, Pesticides and Polycyclic Aromatic Hydrocarbon Pollutants from Aqueous and Solid Phases. Sci Total Environ 2022, 817, 153054. https://doi.org/10.1016/j.scitotenv.2022.153054
[146] Palansooriya, K. N.; Li, J.; Dissanayake, P. D.; Suvarna, M.; Li, L.; Yuan, X.; Sarkar, B.; Tsang, D. C. W.; Rinklebe, J.; Wang, X.; Ok, Y. S. Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning. Environ Sci Technol 2022, 56, 4187–4198. https://doi.org/ 10.1021/acs.est.1c08302
[147] Rúa-Díaz, S.; Forjan, R.; Lago-Vila, M.; Cerqueira, B.; Arco-Lázaro, E.; Marcet, P.; Baragaño, D.; Gallego, J. L. R.; Covelo, E. F. Pyrolysis Temperature Influences the Capacity of Biochar to Immobilize Copper and Arsenic in Mining Soil Remediation. Environ Sci Pollut R 2023, 30, 32882–32893. https://doi.org/ 10.1007/s11356-022-24492-6
[148] Liang, J.; Chang, J.; Xie, J.; Yang, L.; Sheteiwy, M. S.; Moustafa, A. R. A.; Zaghloul, M. S.; Ren, H. Microorganisms and Biochar Improve the Remediation Efficiency of Paspalum Vaginatum and Pennisetum Alopecuroides on Cadmium-Contaminated Soil. Toxics 2023, 11, 582. https://doi.org/10.3390/toxics11070582
[149] Northvolt. Northvolt develops state-of-the-art sodium-ion battery validated at 160 Wh/kg. https://northvolt.com/articles/northvolt-sodium-ion/ (accessed 2023-12-01)