Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Фізико-хімічні дослідження механізму взаємодії наночастинок подвійного оксиду дво- та тривалентного феруму з серпіновим білком-овальбуміном і водою

Iryna Tsykhanovska1, Mykola Riabchykov2, Olexandr Alexandrov1, Victoriya Evlash3, Oksana Bryzytska4, Sergey Gubsky3, Tatyana Lazareva1, Olga Blahyi1
Affiliation: 
1 Ukrainian Engineer Pedagogic Academy, Universitetska St., 16, 61003, Kharkiv, Ukraine 2 Lutsk National Technical University, Lvivska St., 75, 43018, Lutsk, Ukraine 3 State Biotechnological University, Klochkivska St., 333, 61051, Kharkiv, Ukraine 4 National University of Pharmacy, Pushkinska St., 53, 61002, Kharkiv, Ukraine oksanabrizi69@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.03.481
AttachmentSize
PDF icon full_text.pdf891.75 KB
Abstract: 
Новизною роботи є теоретичне обґрун¬ту¬вання й експериментальне підтвердження механізму взаємодії наночастинок Fe3O4 з Н2О та овальбуміном-OVA, що прове-де¬но за допомогою комплексу фізико-хімічних досліджень. Ви¬значено, що механізм ґрунтується на кластерофільності на¬ночастинок і водневих, електростатичних і ван-дер-ваальсових взаємодіях. Встановлено, що взаємодія наночастинок Fe3O4 з OVA відбувалася за механізмом статичного гасіння з утворенням міжмолекулярного нефлуоресцентного комплексу, який змінює нативну структуру OVA. Константа зв'язування змінювалася від 3,3×105 до 4,8×105 л•моль−1 залежно від значення рН середовища та температури. Термодинамічними розрахунками підтверджено спонтанність процесу зв'язування з переважанням ентальпійного фактора.
References: 

[1] Dron, І.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220
[2] Goralchuk, A.; Gubsky, S.; Omelchenko, S.; Riabets, O.; Grinchenko, O.; Fedak, N.; Kotlyar, O.; Cheremska, T.; Skrynnik, V. Impact of Added Food Ingredients on Foaming and Texture of the Whipped Toppings: A Chemometric Analysis. Eur. Food Res. Technol. 2020, 246, 1955-1970. (In Ukrainian) https://doi.org/10.1007/s00217-020-03547-3
[3] Bratychak, М.; Zemke, V.; Chopyk, N. The features of Rheological and Tribological Behavior of High-Viscosity Polyolefine Compositions Depending on their Content. Chem. Chem. Technol. 2021, 15, 486-492. https://doi.org/10.23939/chcht15.04.486
[4] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Lazarieva, T.; Svidlo, K.; Gontar, T.; Yurchenko, L.; Pavlotska, L. Substantiation of the Mechanism of Interaction between Biopolymers of Rye-and-wheat Flour and the Nanoparticles of the Magnetofооd. Food Additive in Order to Improve Moisture-retaining Capacity of Dough. East.-Eur. J. Enterp. Technol. 2018, 2/11 (92), 70-80. (In Ukrainian) https://doi.org/10.15587/1729-4061.2018.126358
[5] Tsykhanovska, I.; Evlash, V.; Oleksandrov, O.; Gontar, T. Mechanism of Fat-Binding and Fat-Contenting of the Nanoparticles of a Food Supplement on the Basis of Double Oxide of Two– and Trivalent Iron. Ukr. Food J. 2018, 7, 702-715. https://doi.org/10.24263/2304-974X-2018-7-4-14
[6] Jumadilov, Т.; Malimbayeva, Z.; Yskak, L.; Suberlyak, O.; Kondaurov, R.; Imangazy, А.; Agibayeva, L.; Akimov, А.; Khimersen, К.; Zhuzbayev, А. Comparative Characteristics of Polymethacrylic Acid Hydrogel Sorption Activity in Relation to Lanthanum Ions in Different Intergel Systems. Chem. Chem. Technol. 2022, 16, 418-431. https://doi.org/10.23939/chcht16.03.418
[7] Li, J.; Pylypchuk, I.; Johansson, D.; Kessler, V.; Seisenbaeva, G.; Langton, M. Self-Assembly of Plant Protein Fibrils Interacting with Superparamagnetic Iron Oxide Nanoparticles. Scientific Reports 2019, 9, 8939. https://doi.org/10.1038/s41598-019-45437-z
[8] Chavali1, M.; Nikolova, M. Metal Oxide Nanoparticles and their Applications in Nanotechnology. SN Applied Sciences 2019, 1, 607. https://doi.org/10.1007/s42452-019-0592-3
[9] Tsykhanovska, I.; Stabnikova, О.; Gubsky, S. Spectroscopic Studies of Interaction of Iron Oxide Nanoparticles with Ovalbumin Molecules. Mater. Proc 2022, 9(1), 2. https:// doi.org/10.3390/materproc2022009002
[10] Tsykhanovska, I.; Evlash, V.; Blahyi, O. Mechanism of Water-Binding and Water-Retention of Food Additives Nanoparticles Based on Double Oxide of Two– and Trivalent Iron. Ukr. Food J. 2020, 9, 298-321. https://doi.org/10.24263/2304-974x-2020-9-2-4
[11] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Gontar, T. Dissolution Kinetics of Fe3O4 Nanoparticles in the Acid Media. Chem. Chem. Technol. 2019, 13, 170-184. https://doi.org/10.23939/chcht13.02.170
[12] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Gontar, T.; Shmatkov, D. The Study of the Interaction Mechanism of Linoleic Acid and 1-Linoleyl-2-oleoyl-3-linolenoyl-glycerol with Fe3O4 Nanoparticles. Chem. Chem. Technol. 2019, 13, 303-316. https://doi.org/10.23939/chcht13.03.303
[13] Ramachandraiah, К.; Choi, M.; Hong, G. Micro– and Nano-Scaled Materials for Strategy-Based Applications in Innovative Livestock Products: A Review. Trends Food Sci Technol 2018, 71, 25. https://doi.org/10.1016/j.tifs.2017.10.017
[14] Zozulya, G.; Kuntyi, О.; Mnykh, R.; Sozanskyi, М. Synthesis of Antibacterially Active Silver Nanoparticles by Galvanic Replacement on Magnesium in Solutions of Sodium Polyacrylate in an Ultrasound. Chem. Chem. Technol. 2021, 15, 493-499.
https://doi.org/10.23939/chcht15.04.493
[15] Deivasigamani, Р.; Ponnusamy, S.; Sathish, S.; Suresh, A. Superhigh Adsorption of Cadmium(ii) Ions onto Surface Modified Nano Zerovalent Iron Composite (cns-nzvi): Characterization, Adsorption Kinetics and Isotherm Studies. Chem. Chem. Technol. 2021, 15, 457-464. https://doi.org/10.23939/chcht15.04.457
[16] Dantas, M.; Tenório, H.; Lopes, T.; Pereira, H.; Marsaioli, A.; Figueiredo, I.; Santos, J. Interactions of Tetracyclines with Ovalbumin, the Main Allergen Protein from Egg White: Spectroscopic and Electrophoretic Studies. Int. J. Biol. Macromol. 2017, 102, 505-514. https://doi.org/10.1016/j.ijbiomac.2017.04.052
[17] Kashanian, F.; Habibi-Rezaei, M.; Bagherpour, A.; Seyedarabi, A.; Moosavi-Movahedi, A. Magnetic Nanoparticles as Double-Edged Swords: Concentration-Dependent Ordering or Disordering Effects on Lysozyme. RSC Adv. 2017, 7, 54813. https://doi.org/10.1039/C7RA08903A
[18] Babu, S.; Neeraja, D. Experimental Study of Natural Admixture Effect on Conventional Concrete and High Volume Class F Flyash Blended Concrete. Case Stud. Constr. Mater. 2016, 6(C), 43-62. https://doi.org/10.1016/j.cscm.2016.09.003
[19] Tsykhanovska I., Evlash V., Alexandrov O., Riabchykov M., Lazarieva T., Nikulina A., Blahyi O. Technology of Bakery Products Using Magnetofood as a Food Additive. In Bioenhancement and Fortification of Foods for a Healthy Diet; Paredes-López, O.; Shevchenko, O.; Stabnikov, V.; Ivanov. V., Eds.; CRC Press: Boca Raton, FL, 2022. https://doi.org/10.1201/9781003225287
[20] Hussein, S.; Amir, Z.; Jan, B.; Khalil, М.; Azizi, А. Colloidal Stability of CA, SDS and PVA Coated Iron Oxide Nanoparticles (IONPs): Effect of Molar Ratio and Salinity. Polymers 2022, 14, 4787. https://doi.org/10.3390/polym14214787
[21] Maestro, А.; Santini, Е.; Zabiegaj, D.; Llamas, S.; Ravera, F.; Liggieri, L.; Ortega, F.; Rubio, R.; Guzman, Е. Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Adv. Condens. Matter Phys. 2015, 2015, ID 917516. https://dx.doi.org/10.1155/2015/917516
[22] Dzwolak, W.; Kato, М.; Taniguchi, Yo. Fourier Transform Infrared Spectroscopy in High-Pressure Studies on Proteins. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology 2002, 1595, 131-144. https://doi.org/10.1016/S0167-4838(01)00340-5
[23] Byler, D.; Susi, H. Examination of the Secondary Structure of Proteins by Deconvolved FTIR Spectra. Biopolymers 1986, 25, 469-487. https://doi.org/10.1002/bip.360250307
[24] Midoux, P.; Wahl, P.; Auchet, J.; Monsigny, M. Fluorescence Quenching of Tryptophan by Trifluoroacetamide. Biochim. Biophys. Acta-Gen. Subj. 1984, 801, 16-25. https://doi.org/10.1016/0304-4165(84)90207-1
[25] Stein, P.; Leslie, A.; Finch, J.; Carrell, R. Crystal Structure of Uncleaved Ovalbumin at 1•95 Å Resolution. J. Mol. Biol., 1991, 221, 941-959. https://doi.org/10.1016/0022-2836(91)80185-W
[26] Lin, T.; Shu, L.; Hongna, B.; Xin, G. Interaction of Cyanidin-3-O-glucoside with Three Proteins. Food Chem. 2016, 196, 550-559. https://doi.org/10.1016/j.foodchem.2015.09.089

[27] Lakowicz, J. Principles of Fluorescence Spectroscopy; Third Edition; Springer: New York, 2006. https://doi.org/10.1007/978-0-387-46312-4
[28] Shu, Y.; Xue, W.; Xu, X.; Jia, Z.; Yao, X.; Liu, S.; Liu, L. Interaction of Erucic Acid with Bovine Serum Albumin Using a Multi-Spectroscopic Method and Molecular Docking Technique. Food Chem. 2015, 173, 31-37. https://doi.org/10.1016/j.foodchem.2014.09.164
[29] Bhattacharya, M.; Mukhopadhyay, S. Structural and Dynamical Insights into the Molten-Globule Form of Ovalbumin. J. Phys. Chem. B, 2012, 116, 520-531. https://doi.org/10.1021/jp208416d
[30] Blank-Shim, S.; Schwaminger, S.; Borkowska-Panek, M.; Anand, P.; Yamin, P.; Fraga-García, P.; Fink, K.; Wenzel, W.; Berensmeier, S. Binding Patterns of Homo-Peptides on Bare Magnetic Nanoparticles: Insights into Environmental Dependence. Scientific Reports 2017, 7, 14047. https://doi.org/10.1038/s41598-017-13928-6
[31] Bi, S.; Song, D.; Tian, Y.; Zhou, X.; Liu, Z.; Zhang, H. Molecular Spectroscopic Study on the Interaction of Tetracyclines with Serum Albumins. Spectrochim. Acta Part A 2005, 61, 629-636. https://doi.org/10.1016/j.saa.2004.05.028
[32] Kang, D.; Ryu, S.; Park, Y.; Czarnik-Matusewicz, B.; Jung, Y. PH-Induced Structural Changes of Ovalbumin Studied by 2D Correlation IR Spectroscopy. J. Mol. Struct. 2014, 1069, 299-304. https://doi.org/10.1016/j.molstruc.2014.02.061
[33] Ghalandari, B.; Divsalar, A.; Saboury, A.; Parivar, K. The New Insight into Oral Drug Delivery System Based on Metal Drugs in Colon Cancer Therapy Through β-Lactoglobulin/oxali-palladium Nanocapsules. J. Photochem. Photobiol. B. 2014, 140, 255-265.
https://doi.org/10.1016/j.jphotobiol.2014.08.003
[34] Zhang, H.; Wu, P.; Zhu, Z.; Wang, Y. Interaction of γ-Fe2O3 Nanoparticles with Fibrinogen. Spectrochim Acta A Mol Biomol Spectrosc. 2015, 151, 40-47. https://doi.org/10.1016/j.saa.2015.06.087