Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Physico-Chemical Studies of the Interaction Mechanism of Double and Trivalent Iron Double Oxide Nano-Particles with Serpin Protein Ovalbumin and Water

Iryna Tsykhanovska1, Mykola Riabchykov2, Olexandr Alexandrov1, Victoriya Evlash3, Oksana Bryzytska4, Sergey Gubsky3, Tatyana Lazareva1, Olga Blahyi1
Affiliation: 
1 Ukrainian Engineer Pedagogic Academy, Universitetska St., 16, 61003, Kharkiv, Ukraine 2 Lutsk National Technical University, Lvivska St., 75, 43018, Lutsk, Ukraine 3 State Biotechnological University, Klochkivska St., 333, 61051, Kharkiv, Ukraine 4 National University of Pharmacy, Pushkinska St., 53, 61002, Kharkiv, Ukraine oksanabrizi69@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.03.481
AttachmentSize
PDF icon full_text.pdf891.75 KB
Abstract: 
The novelty of the work is the theoretical justification and experimental confirmation of the mechanism of interaction of Fe3O4 nanoparticles with Н2О and ovalbumin-OVA, which was carried out with the help of a complex of physical and chemical studies. It was determined that the mechanism is based on the clustero-philicity of nanoparticles and hydrogen, electrostatic and van der Waals interactions. It was established that the interaction of Fe3O4 nanoparticles with OVA took place by the mechanism of static quenching with the formation of an intermolecular non-fluorescent complex that chan¬ges the native structure of OVA. The binding constant varied from 3.3×105 to 4.8×105 L•mol-1 depending on the pH value of the medium and temperature. Thermo¬dy¬namic calculations confirmed the spontaneity of the bin¬ding process with the predominance of the enthalpy factor.
References: 

[1] Dron, І.; Nosovа, N.; Fihurka, N.; Bukartyk, N.; Nadashkevych, Z.; Varvarenko, S.; Samaryk, V. Investigation of Hydrogel Sheets Based on Highly Esterified Pectin. Chem. Chem. Technol. 2022, 16, 220-226. https://doi.org/10.23939/chcht16.02.220
https://doi.org/10.23939/chcht16.02.220

[2] Goralchuk, A.; Gubsky, S.; Omelchenko, S.; Riabets, O.; Grinchenko, O.; Fedak, N.; Kotlyar, O.; Cheremska, T.; Skrynnik, V. Impact of Added Food Ingredients on Foaming and Texture of the Whipped Toppings: A Chemometric Analysis. Eur. Food Res. Technol. 2020, 246, 1955-1970. (In Ukrainian) https://doi.org/10.1007/s00217-020-03547-3
https://doi.org/10.1007/s00217-020-03547-3

[3] Bratychak, М.; Zemke, V.; Chopyk, N. The features of Rheological and Tribological Behavior of High-Viscosity Polyolefine Compositions Depending on their Content. Chem. Chem. Technol. 2021, 15, 486-492. https://doi.org/10.23939/chcht15.04.486
https://doi.org/10.23939/chcht15.04.486

[4] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Lazarieva, T.; Svidlo, K.; Gontar, T.; Yurchenko, L.; Pavlotska, L. Substantiation of the Mechanism of Interaction between Biopolymers of Rye-and-wheat Flour and the Nanoparticles of the Magnetofооd. Food Additive in Order to Improve Moisture-retaining Capacity of Dough. East.-Eur. J. Enterp. Technol. 2018, 2/11 (92), 70-80. (In Ukrainian) https://doi.org/10.15587/1729-4061.2018.126358
https://doi.org/10.15587/1729-4061.2018.126358

[5] Tsykhanovska, I.; Evlash, V.; Oleksandrov, O.; Gontar, T. Mechanism of Fat-Binding and Fat-Contenting of the Nanoparticles of a Food Supplement on the Basis of Double Oxide of Two- and Trivalent Iron. Ukr. Food J. 2018, 7, 702-715. https://doi.org/10.24263/2304-974X-2018-7-4-14
https://doi.org/10.24263/2304-974X-2018-7-4-14

[6] Jumadilov, Т.; Malimbayeva, Z.; Yskak, L.; Suberlyak, O.; Kondaurov, R.; Imangazy, А.; Agibayeva, L.; Akimov, А.; Khimersen, К.; Zhuzbayev, А. Comparative Characteristics of Polymethacrylic Acid Hydrogel Sorption Activity in Relation to Lanthanum Ions in Different Intergel Systems. Chem. Chem. Technol. 2022, 16, 418-431. https://doi.org/10.23939/chcht16.03.418
https://doi.org/10.23939/chcht16.03.418

[7] Li, J.; Pylypchuk, I.; Johansson, D.; Kessler, V.; Seisenbaeva, G.; Langton, M. Self-Assembly of Plant Protein Fibrils Interacting with Superparamagnetic Iron Oxide Nanoparticles. Scientific Reports 2019, 9, 8939. https://doi.org/10.1038/s41598-019-45437-z
https://doi.org/10.1038/s41598-019-45437-z

[8] Chavali1, M.; Nikolova, M. Metal Oxide Nanoparticles and their Applications in Nanotechnology. SN Applied Sciences 2019, 1, 607. https://doi.org/10.1007/s42452-019-0592-3
https://doi.org/10.1007/s42452-019-0592-3

[9] Tsykhanovska, I.; Stabnikova, О.; Gubsky, S. Spectroscopic Studies of Interaction of Iron Oxide Nanoparticles with Ovalbumin Molecules. Mater. Proc 2022, 9(1), 2. https:// doi.org/10.3390/materproc2022009002
https://doi.org/10.3390/materproc2022009002

[10] Tsykhanovska, I.; Evlash, V.; Blahyi, O. Mechanism of Water-Binding and Water-Retention of Food Additives Nanoparticles Based on Double Oxide of Two- and Trivalent Iron. Ukr. Food J. 2020, 9, 298-321. https://doi.org/10.24263/2304-974x-2020-9-2-4
https://doi.org/10.24263/2304-974X-2020-9-2-4

[11] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Gontar, T. Dissolution Kinetics of Fe3O4 Nanoparticles in the Acid Media. Chem. Chem. Technol. 2019, 13, 170-184. https://doi.org/10.23939/chcht13.02.170
https://doi.org/10.23939/chcht13.02.170

[12] Tsykhanovska, I.; Evlash, V.; Alexandrov, A.; Gontar, T.; Shmatkov, D. The Study of the Interaction Mechanism of Linoleic Acid and 1-Linoleyl-2-oleoyl-3-linolenoyl-glycerol with Fe3O4 Nanoparticles. Chem. Chem. Technol. 2019, 13, 303-316. https://doi.org/10.23939/chcht13.03.303
https://doi.org/10.23939/chcht13.03.303

[13] Ramachandraiah, К.; Choi, M.; Hong, G. Micro- and Nano-Scaled Materials for Strategy-Based Applications in Innovative Livestock Products: A Review. Trends Food Sci Technol 2018, 71, 25. https://doi.org/10.1016/j.tifs.2017.10.017
https://doi.org/10.1016/j.tifs.2017.10.017

[14] Zozulya, G.; Kuntyi, О.; Mnykh, R.; Sozanskyi, М. Synthesis of Antibacterially Active Silver Nanoparticles by Galvanic Replacement on Magnesium in Solutions of Sodium Polyacrylate in an Ultrasound. Chem. Chem. Technol. 2021, 15, 493-499.
https://doi.org/10.23939/chcht15.04.493

https://doi.org/10.23939/chcht15.04.493
https://doi.org/10.23939/chcht15.04.493

[15] Deivasigamani, Р.; Ponnusamy, S.; Sathish, S.; Suresh, A. Superhigh Adsorption of Cadmium(ii) Ions onto Surface Modified Nano Zerovalent Iron Composite (cns-nzvi): Characterization, Adsorption Kinetics and Isotherm Studies. Chem. Chem. Technol. 2021, 15, 457-464. https://doi.org/10.23939/chcht15.04.457
https://doi.org/10.23939/chcht15.04.457

[16] Dantas, M.; Tenório, H.; Lopes, T.; Pereira, H.; Marsaioli, A.; Figueiredo, I.; Santos, J. Interactions of Tetracyclines with Ovalbumin, the Main Allergen Protein from Egg White: Spectroscopic and Electrophoretic Studies. Int. J. Biol. Macromol. 2017, 102, 505-514. https://doi.org/10.1016/j.ijbiomac.2017.04.052
https://doi.org/10.1016/j.ijbiomac.2017.04.052

[17] Kashanian, F.; Habibi-Rezaei, M.; Bagherpour, A.; Seyedarabi, A.; Moosavi-Movahedi, A. Magnetic Nanoparticles as Double-Edged Swords: Concentration-Dependent Ordering or Disordering Effects on Lysozyme. RSC Adv. 2017, 7, 54813. https://doi.org/10.1039/C7RA08903A
https://doi.org/10.1039/C7RA08903A

[18] Babu, S.; Neeraja, D. Experimental Study of Natural Admixture Effect on Conventional Concrete and High Volume Class F Flyash Blended Concrete. Case Stud. Constr. Mater. 2016, 6(C), 43-62. https://doi.org/10.1016/j.cscm.2016.09.003
https://doi.org/10.1016/j.cscm.2016.09.003

[19] Tsykhanovska I., Evlash V., Alexandrov O., Riabchykov M., Lazarieva T., Nikulina A., Blahyi O. Technology of Bakery Products Using Magnetofood as a Food Additive. In Bioenhancement and Fortification of Foods for a Healthy Diet; Paredes-López, O.; Shevchenko, O.; Stabnikov, V.; Ivanov. V., Eds.; CRC Press: Boca Raton, FL, 2022. https://doi.org/10.1201/9781003225287
https://doi.org/10.1201/9781003225287

[20] Hussein, S.; Amir, Z.; Jan, B.; Khalil, М.; Azizi, А. Colloidal Stability of CA, SDS and PVA Coated Iron Oxide Nanoparticles (IONPs): Effect of Molar Ratio and Salinity. Polymers 2022, 14, 4787. https://doi.org/10.3390/polym14214787
https://doi.org/10.3390/polym14214787

[21] Maestro, А.; Santini, Е.; Zabiegaj, D.; Llamas, S.; Ravera, F.; Liggieri, L.; Ortega, F.; Rubio, R.; Guzman, Е. Particle and Particle-Surfactant Mixtures at Fluid Interfaces: Assembly, Morphology, and Rheological Description. Adv. Condens. Matter Phys. 2015, 2015, ID 917516. https://dx.doi.org/10.1155/2015/917516
https://doi.org/10.1155/2015/917516

[22] Dzwolak, W.; Kato, М.; Taniguchi, Yo. Fourier Transform Infrared Spectroscopy in High-Pressure Studies on Proteins. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 2002, 1595, 131-144. https://doi.org/10.1016/S0167-4838(01)00340-5
https://doi.org/10.1016/S0167-4838(01)00340-5

[23] Byler, D.; Susi, H. Examination of the Secondary Structure of Proteins by Deconvolved FTIR Spectra. Biopolymers 1986, 25, 469-487. https://doi.org/10.1002/bip.360250307
https://doi.org/10.1002/bip.360250307

[24] Midoux, P.; Wahl, P.; Auchet, J.; Monsigny, M. Fluorescence Quenching of Tryptophan by Trifluoroacetamide. Biochim. Biophys. Acta-Gen. Subj. 1984, 801, 16-25. https://doi.org/10.1016/0304-4165(84)90207-1
https://doi.org/10.1016/0304-4165(84)90207-1

[25] Stein, P.; Leslie, A.; Finch, J.; Carrell, R. Crystal Structure of Uncleaved Ovalbumin at 1•95 Å Resolution. J. Mol. Biol., 1991, 221, 941-959. https://doi.org/10.1016/0022-2836(91)80185-W
https://doi.org/10.1016/0022-2836(91)80185-W

[26] Lin, T.; Shu, L.; Hongna, B.; Xin, G. Interaction of Cyanidin-3-O-glucoside with Three Proteins. Food Chem. 2016, 196, 550-559. https://doi.org/10.1016/j.foodchem.2015.09.089
https://doi.org/10.1016/j.foodchem.2015.09.089

[27] Lakowicz, J. Principles of Fluorescence Spectroscopy; Third Edition; Springer: New York, 2006. https://doi.org/10.1007/978-0-387-46312-4
https://doi.org/10.1007/978-0-387-46312-4

[28] Shu, Y.; Xue, W.; Xu, X.; Jia, Z.; Yao, X.; Liu, S.; Liu, L. Interaction of Erucic Acid with Bovine Serum Albumin Using a Multi-Spectroscopic Method and Molecular Docking Technique. Food Chem. 2015, 173, 31-37. https://doi.org/10.1016/j.foodchem.2014.09.164
https://doi.org/10.1016/j.foodchem.2014.09.164

[29] Bhattacharya, M.; Mukhopadhyay, S. Structural and Dynamical Insights into the Molten-Globule Form of Ovalbumin. J. Phys. Chem. B, 2012, 116, 520-531. https://doi.org/10.1021/jp208416d
https://doi.org/10.1021/jp208416d

[30] Blank-Shim, S.; Schwaminger, S.; Borkowska-Panek, M.; Anand, P.; Yamin, P.; Fraga-García, P.; Fink, K.; Wenzel, W.; Berensmeier, S. Binding Patterns of Homo-Peptides on Bare Magnetic Nanoparticles: Insights into Environmental Dependence. Scientific Reports 2017, 7, 14047. https://doi.org/10.1038/s41598-017-13928-6
https://doi.org/10.1038/s41598-017-13928-6

[31] Bi, S.; Song, D.; Tian, Y.; Zhou, X.; Liu, Z.; Zhang, H. Molecular Spectroscopic Study on the Interaction of Tetracyclines with Serum Albumins. Spectrochim. Acta Part A 2005, 61, 629-636. https://doi.org/10.1016/j.saa.2004.05.028
https://doi.org/10.1016/j.saa.2004.05.028

[32] Kang, D.; Ryu, S.; Park, Y.; Czarnik-Matusewicz, B.; Jung, Y. PH-Induced Structural Changes of Ovalbumin Studied by 2D Correlation IR Spectroscopy. J. Mol. Struct. 2014, 1069, 299-304. https://doi.org/10.1016/j.molstruc.2014.02.061
https://doi.org/10.1016/j.molstruc.2014.02.061

[33] Ghalandari, B.; Divsalar, A.; Saboury, A.; Parivar, K. The New Insight into Oral Drug Delivery System Based on Metal Drugs in Colon Cancer Therapy Through β-Lactoglobulin/oxali-palladium Nanocapsules. J. Photochem. Photobiol. B. 2014, 140, 255-265.
https://doi.org/10.1016/j.jphotobiol.2014.08.003

https://doi.org/10.1016/j.jphotobiol.2014.08.003
https://doi.org/10.1016/j.jphotobiol.2014.08.003

[34] Zhang, H.; Wu, P.; Zhu, Z.; Wang, Y. Interaction of γ-Fe2O3 Nanoparticles with Fibrinogen. Spectrochim Acta A Mol Biomol Spectrosc. 2015, 151, 40-47. https://doi.org/10.1016/j.saa.2015.06.087
https://doi.org/10.1016/j.saa.2015.06.087