Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/

Активовані перйодати і натрію перкарбонат у передових процесах окиснення органічних забруднювачів водних середовищ. огляд

Yuriy Sukhatskiy1, Zenovii Znak1, Martyn Sozanskyi1, Mariana Shepida1, Parag R. Gogate2, Volodymyr Tsymbaliuk1
1 Lviv Polytechnic National University 12, S. Bandery St., Lviv 79013, Ukraine 2 Institute of Chemical Technology, Matunga, Mumbai 40019, India
PDF icon full_text.pdf594.85 KB
Розглянуто методи активації перйодатів і натрію перкарбонату для планування стратегічних підходів до підвищення ефективності й інтенсивності окиснювальної деградації органічних забруднювачів водних середовищ. Запропоновано класифікацію методів активації перйодатів на методи активації зовнішніми енергетичними впливами, методи каталітичної активації й інші методи активації (водню пероксидом, гідроксиламіном, у лужних умовах). Методи активації натрію перкарбонату було поділено на методи гомогенної та гетерогенної активації.

[1] Zhang, X.; Yu, X.; Yu, X.; Kamali, M.; Appels, L.; Van der Bruggen, B.; Cabooter, D.; Dewil, R. Efficiency and mechanism of 2,4-dichlorophenol degradation by the UV/ process. Sci. Total Environ. 2021, 782, 146781.
[2] Sukhatskiy, Y.; Shepida, M.; Sozanskyi, M.; Znak, Z.; Gogate, P.R. Periodate-based advanced oxidation processes for wastewater treatment: A review. Sep. Purif. Technol. 2023, 304, 122305.
[3] Djaballah, M.L.; Merouani, S.; Bendjama, H.; Hamdaoui, O. Development of a free radical-based kinetics model for the oxidative degradation of chlorazol black in aqueous solution using periodate photoactivated process. J. Photochem. Photobiol. A: Chem. 2021, 408, 113102.
[4] Chen, L.; Duan, J.; Du, P.; Sun, W.; Lai, B.; Liu, W. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 2022, 221, 118747.
[5] Nessaibia, M.; Ghodbane, H.; Ferkous, H.; Merouani, S.; Alam, M.; Balsamo, M.; Benguerba, Y.; Erto, A. Homogenous UV/periodate process for the treatment of acid orange 10 polluted water. Water 2023, 15, 758.
[6] Niu, L.; Zhang, K.; Jiang, L.; Zhang, M.; Feng, M. Emerging periodate-based oxidation technologies for water decontamination: A state-of-the-art mechanistic review and future perspectives. J. Environ. Manag. 2022, 323, 116241.
[7] Zhang, X.; Kamali, M.; Uleners, T.; Symus, J.; Zhang, S.; Liu, Z.; V. Costa, M.E.; Appels, L.; Cabooter, D.; Dewil, R. UV/TiO2/periodate system for the degradation of organic pollutants – Kinetics, mechanisms and toxicity study. Chem. Eng. J. 2022, 449, 137680.
[8] Chamekh, H.; Chiha, M.; Ahmedchekkat, F.; Souames, N.E.H. Degradation of Orange G by UV/TiO2/ process: Effect of operational parameters and estimation of electrical energy consumption. Ind. J. Chem. Technol. 2023, 30, 293–307. 10.56042/ijct.v30i3.62814
[9] Bendjama, M.; Hamdaoui, O.; Ferkous, H.; Alghyamah, A. Degradation of Safranin O in water by UV/TiO2/ process: Effect of operating conditions and mineralization. Catal. 2022, 12, 1460.
[10] Abdel-Aziz, R.; Ahmed, M.A.; Abdel Messih, M.F. A novel UV and visible light driven photocatalyst AgIO4/ZnO nanoparticles with highly enhanced photocatalytic performance for removal of rhodamine B and indigo carmine dyes. J. Photochem. Photobiol. A: Chem. 2020, 389, 112245.
[11] Ahmed, M.A.; Mahran, B.M.; Abbas, A.M.; Tarek, M.A.; Saed, A.M. Construction of direct Z-scheme AgIO4/TiO2 heterojunctions for exceptional photodegradation of rhodamine B dye. J. Dispers. Sci. Technol. 2020, 43, 349–363.
[12] Lu, G.; Li, X.; Li, W.; Liu, Y.; Wang, N.; Pan, Z.; Zhang, G.; Zhang, Y.; Lai B. Thermo-activated periodate oxidation process for tetracycline degradation: Kinetics and byproducts transformation pathways. J. Hazard. Mater. 2024, 461, 132696.
[13] Zong, Y.; Shao, Y.; Zeng, Y.; Shao, B.; Xu, L.; Zhao, Z.; Liu, W.; Wu, D. Enhanced oxidation of organic contaminants by iron(II)-activated periodate: The significance of high-valent iron–oxo species. Environ. Sci. Technol. 2021, 55, 7634–7642.
[14] Seid-Mohammadi, A.; Asgari, G.; Shokoohi, R.; Baziar, M.; Mirzaei, N.; Adabi, S.; Partoei, K. Degradation of phenol using US/periodate/nZVI system from aqueous solutions. Glob. Nest. J. 2019, 21, 360–367.
[15] Zong, Y.; Zhang, H.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, L.; Wu, D. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. J. Hazard. Mater. 2022, 423, 126991.
[16] Wu, Y.; Tan, X.; Zhao, J.; Ma, J. α-Fe2O3 mediated periodate activation for selective degradation of phenolic compounds via electron transfer pathway under visible irradiation. J. Hazard. Mater. 2023, 454, 131506.
[17] Wang, Q.; Zeng, H.; Liang, Y.; Cao, Ye.; Xiao, Y.; Ma, J. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals. Chem. Eng. J. 2021, 407, 126738.
[18] He, L.; Yang, S.; Yang, L.; Shen, S.; Li, Y.; Kong, D.; Chen, Z.; Yang, S.; Wang, J.; Wu, L. et al. Ball milling-assisted preparation of sludge biochar as a novel periodate activator for nonradical degradation of sulfamethoxazole: Insight into the mechanism of enhanced electron transfer. Environ. Pollut. 2023, 316, 120620.
[19] Yang, B.; Ma, Q.; Hao, J.; Huang, J.; Wang, Q.; Wang, D.; Zhang, J. Periodate-based advanced oxidation processes: A review focusing on the overlooked role of high-valent iron and manganese species. Chemosphere 2023, 337, 139442.
[20] Xiang, L.; Almatrafi, E.; Yang, H.; Ye, H.; Qin, F.; Yi, H.; Fu, Y.; Huo, X.; Xia, W.; Li, H. et al. Coupled carbon structure and iron species for multiple periodate-based oxidation reaction. Chem. Eng. J. 2023, 455, 140560.
[21] Zong, Y.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, J.; Liu, W.; Xu, L.; Wu, D. Trace Mn(II)-catalyzed periodate oxidation of organic contaminants not relying on any transient reactive species: The substrate-dependent dual roles of in-situ formed colloidal MnO2. Chem. Eng. J. 2023, 451, 139106.
[22] Yu, J.; Qiu, W.; Lin, X.; Wang, Y.; Lu, X.; Yu, Y.; Gu, H.; Heng, S.; Zhang, H.; Ma, J. Periodate activation with stable MgMn2O4 spinel for bisphenol A removal: Radical and non-radical pathways. Chem. Eng. J. 2023, 459, 141574.
[23] Yang, T.; An, L.; Zeng, G.; Mai, J.; Li, Y.; Lian, J.; Zhang, H.; Li, J.; Cheng, X.; Jia, J. et al. Enhanced hydroxyl radical generation for micropollutant degradation in the In2O3/Vis-LED process through the addition of periodate. Water Res. 2023, 243, 120401.
[24] Zhang, K.; Ye, C.; Lou, Y.; Yu, X.; Feng, M. Promoting selective water decontamination via boosting activation of periodate by nanostructured Ru-supported Co3O4 catalysts. J. Hazard. Mater. 2023, 442, 130058.
[25] Chen, W.; Dai, X.; Liu, Z.; Du, B.; Zheng, X.; Ma, D.; Huang, X. Sulfide-modified cobalt silicate activated periodate for nitenpyram degradation: Enhanced radical and non-radical pathway. Chem. Eng. J. 2023, 469, 143922.
[26] Luo, K.; Shi, Y.; Huang, R.; Wei, X.; Wu, Z.; Zhou, P.; Zhang, H.; Wang, Y.; Xiong, Z.; Lai, B. Activation of periodate by N-doped iron-based porous carbon for degradation of sulfisoxazole: Significance of catalyst-mediated electron transfer mechanism. J. Hazard. Mater. 2023, 457, 131790.
[27] Long, Y.; Huang, S.; Zhao, S.; Xiao, G.; Sun, J.; Peng, D. Pyrolyzed iron-nitrogen-carbon hybrids for efficient contaminant decomposition via periodate activation: Active site and degradation mechanism. Sep. Purif. Technol. 2023, 317, 123945.
[28] Shen, S.; Jiang, W.; Zhao, Q.; He, L.; Ma, Y.; Zhou, X.; Wang, J.; Yang, L.; Chen, Z. Molten-salts assisted preparation of iron-nitrogen-carbon catalyst for efficient degradation of acetaminophen by periodate activation. Sci. Total Environ. 2023, 859, 160001.
[29] Chen, Y.; Yuan, X.; Jiang, L.; Zhao, Y.; Chen, H.; Shangguan, Z.; Qin, C.; Wang, H. Insights into periodate oxidation of antibiotics mediated by visible-light-induced polymeric carbon nitride: Performance and mechanism. Chem. Eng. J. 2023, 457, 141147.
[30] Long, Y.; Dai, J.; Zhao, S.; Su, Y.; Wang, Z.; Zhang, Z. Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation. Environ. Sci. Technol. 2021, 55, 5357–5370.
[31] Hu, J.; Zou, Y.; Li, Y.; Yu, Z.; Bao, Y.; Lin, L.; Li, B.; Li, X.-Y. Periodate activation by atomically dispersed Mn on carbon nanotubes for the production of iodate radicals and rapid degradation of sulfadiazine. Chem. Eng. J. 2023, 472, 144862.
[32] He, L.; Lv, L.; Pillai, S.C.; Wang, H.; Xue, J.; Ma, Y.; Liu, Y.; Chen, Y.; Wu, L.; Zhang, Z. et al. Efficient degradation of diclofenac sodium by periodate activation using Fe/Cu bimetallic modified sewage sludge biochar/UV system. Sci. Total Environ. 2021, 783, 146974.
[33] Xiao, P.; Yi, X.; Wu, M.; Wang, X.; Zhu, S.; Gao, B.; Liu, Y.; Zhou, H. Catalytic performance and periodate activation mechanism of anaerobic sewage sludge-derived biochar. J. Hazard. Mater. 2022, 424, 127692.
[34] Yang, H.; Liu, Y.; Zhang, Y.; Liu, L.; Xia, S.; Xue, Q. Secondary pyrolysis oil-based drill-cutting ash for peroxymonosulfate/ periodate activation to remove tetracycline: A comparative study. Sep. Purif. Technol. 2022, 294, 121264.
[35] He, L.; Shi, Y.; Chen, Y.; Shen, S.; Xue, J.; Ma, Y.; Zheng, L.; Wu, L.; Zhang, Z.; Yang, L. Iron-manganese oxide loaded sludge biochar as a novel periodate activator for thiacloprid efficient degradation over a wide pH range. Sep. Purif. Technol. 2022, 288, 120703.
[36] Fang, G.; Li, J.; Zhang, C.; Qin, F.; Luo, H.; Huang, C.; Qin, D.; Ouyang, Z. Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar. Environ. Pollut. 2022, 300, 118939.
[37] Dai, J.; Wang, Z.; Chen, K.; Ding, D.; Yang, S.; Cai, T. Applying a novel advanced oxidation process of biochar activated periodate for the efficient degradation of bisphenol A: Two nonradical pathways. Chem. Eng. J. 2023, 453, 139889.
[38] Hu, J.; Gong, H.; Liu, X.; Luo, J.; Zhu, N. Target-prepared sludge biochar-derived synergistic Mn and N/O induces high-performance periodate activation for reactive iodine radicals generation towards ofloxacin degradation. J. Hazard. Mater. 2023, 460, 132362.
[39] Sukhatskiy, Y.; Sozanskyi, M.; Shepida, M.; Znak, Z.; Gogate, P.R. Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Sep. Purif. Technol. 2022, 288, 120651.
[40] Chadi, N.E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. H2O2/periodate ( ): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environ. Sci.: Water Res. Technol. 2019, 5, 1113–1123.
[41] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Khomyak, S.V.; Mnykh, R.V.; Lysenko, A.V. The decomposition of the benzene in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii 2018, 1, 72–77.
[42] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Vyrsta, K.R. The intensification of the cavitation decomposition of benzene. Voprosy Khimii i Khimicheskoi Tekhnologii 2019, 4, 55–61.
[43] Yavorskiy, V.; Sukhatskiy, Y.; Znak, Z.; Mnykh, R. Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chem. Chem. Technol. 2016, 10, 507–513.
[44] Yavors’kyi, V.Т.; Znak, Z.O.; Sukhats’kyi, Y.V.; Mnykh, R.V. Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Mater. Sci. 2017, 52, 595–600.
[45] Znak, Z.; Sukhatskiy, Y. The brandon method in modelling the cavitation processing of aqueous media. East.-Eur. J. Enterp. Technol. 2016, 3, 37–42.
[46] Sun, H.; He, F.; Choi, W. Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria. Environ. Sci. Technol. 2020, 54, 6427–6437.
[47] Xie, Z.-H.; He, C.-S.; Pei, D.-N.; Dong, Y.; Yang, S.-R.; Xiong, Z.; Zhou, P.; Pan, Z.-C.; Yao, G.; Lai, B. Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chem. Eng. J. 2023, 468, 143778.
[48] Yu, X.; Kamali, M.; Aken, P.V.; Appels, L.; Van der Bruggen, B.; Dewil, R. Synergistic effects of the combined use of ozone and sodium percarbonate for the oxidative degradation of dichlorvos. J. Water Process Eng. 2021, 39, 101721.
[49] Ma, J.; Yang, X.; Jiang, X.; Wen, J.; Li, J.; Zhong, Y.; Chi, L.; Wang, Y. Percarbonate persistence under different water chemistry conditions. Chem. Eng. J. 2020, 389, 123422.
[50] Hung, C.-M.; Chen, C.-W.; Huang, C.-P.; Tsai, M.-L.; Wu, C.-H.; Lin, Y.-L.; Cheng, Y.-R.; Dong, C.-D. Efficacy and cytotoxicity of engineered ferromanganese-bearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. J. Hazard. Mater. 2022, 422, 126922.
[51] Pimentel, J.A.I.; Dong, C.-D.; Garcia-Segura, S.; Abarca, R.R.M.; Chen, C.-W.; de Luna, M.D.G. Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation. Sci. Total Environ. 2021, 781, 146411.
[52] Huang, J.; Zhou, Z.; Ali, M.; Gu, X.; Danish, M.; Sui, Q.; Lyu, S. Degradation of trichloroethene by citric acid chelated Fe(II) catalyzing sodium percarbonate in the environment of sodium dodecyl sulfate aqueous solution. Chemosphere 2021, 281, 130798.
[53] Sablas, M.M.; de Luna, M.D.G.; Garcia-Segura, S.; Chen, C.-W.; Chen, C.-F.; Dong, C.-D. Percarbonate mediated advanced oxidation completely degrades recalcitrant pesticide imidacloprid: Role of reactive oxygen species and transformation products. Sep. Purif. Technol. 2020, 250, 117269.
[54] Ling, X.; Deng, J.; Ye, C.; Cai, A.; Ruan, S.; Chen, M.; Li, X. Fe(II)-activated sodium percarbonate for improving sludge dewaterability: Experimental and theoretical investigation combined with the evaluation of subsequent utilization. Sci. Total Environ. 2021, 799, 149382.
[55] Li, Y.J.; Dong, H.R.; Xiao, J.Y.; Li, L.; Chu, D.D.; Hou, X.Z.; Xiang, S.X.; Dong, Q.X.; Zhang, H.X. Advanced oxidation processes for water purification using percarbonate: Insights into oxidation mechanisms, challenges, and enhancing strategies. J. Hazard. Mater. 2023, 442, 130014.
[56] Ma, J.; Xia, X.C.; Ma, Y.; Luo, Y.J.; Zhong, Y.J. Stability of dissolved percarbonate and its implications for groundwater remediation. Chemosph. 2018, 205, 41–44.
[57] Zhang, B.T.; Kuang, L.L.; Teng, Y.G.; Fan, M.H.; Ma, Y. Application of percarbonate and peroxymonocarbonate in decontamination technologies. J. Environ. Sci. 2021, 105, 100–115.
[58] Thanekar, P.; Lakshmi, N.J.; Shah, M.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of dimethoate using combined approaches based on hydrodynamic cavitation and advanced oxidation processes. Process Saf. Environ. Prot. 2020, 143, 222–230.
[59] Thanekar, P.; Gogate, P.R. Improved processes involving hydrodynamic cavitation and oxidants for treatment of real industrial effluent. Sep. Purif. Technol. 2020, 239, 116563.
[60] Odehnalová, K.; Přibilová, P.; Maršálková, E.; Zezulka, Š.; Pochylý, F.; Rudolf, P.; Maršálek, B. Hydrodynamic cavitation-enhanced activation of sodium percarbonate for estrogen removal. Water Sci. Technol. 2023, 88, 2905–2916.
[61] Dular, M.; Griessler-Bulc, T.; Gutierrez-Aguirre, I.; Heath, E.; Kosjek, T.; Klemenčič, A.K.; Oder, M.; Petkovšek, M.; Rački, N.; Ravnikar M. et al. Use of hydrodynamic cavitation in (waste)water treatment. Ultrason. Sonochem. 2016, 29, 577–588.
[62] Maršalek, B.; Zezulka, S.; Maršalkova, E.; Pochyly, F; Rudolf, P. Synergistic effects of trace concentrations of hydrogen peroxide used in a novel hydrodynamic cavitation device allows for selective removal of cyanobacteria. Chem. Eng. J. 2020, 382, 122383.
[63] Panda, D.; Saharan, V.K.; Manickam, S. Controlled hydrodynamic cavitation: A review of recent advances and perspectives for greener processing. Processes 2020, 8, 220.
[64] Badve, M.; Gogate, P.; Pandit, A.; Csoka, L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep. Purif. Technol. 2013, 106, 15–21.
[65] Zheng, H.X.; Zheng, Y.; Zhu, J.S. Recent developments in hydrodynamic cavitation reactors: Cavitation mechanism, reactor design, and applications. Eng. 2022, 19, 180–198.
[66] Amin, L.P.; Gogate, P.R.; Burgess, A.E.; Bremner, D.H. Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry. Chem. Eng. J. 2010, 156, 165–169.
[67] Kohno, M.; Mokudai, T.; Ozawa, T.; Niwano, Y. Free radical formation from sonolysis of water in the presence of different gases. J. Clin. Biochem. Nutr. 2011, 49, 96–101.
[68] Thanekar, P.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrason. Sonochem. 2021, 70, 105296.
[69] Sukhatskiy, Y.; Znak, Z.; Zin, O.; Chupinskyi, D. Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chem. Chem. Technol. 2021, 15, 284–290.
[70] Torres, R.A.; Pétrier, C.; Combet, E.; Carrier, M.; Pulgarin, C. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrason. Sonochem. 2008, 15, 605–611.
[71] Lin, X.; He, J.; Xu, L.; Fang, Y.; Rao, G. Degradation of metronidazole by ultrasound-assisted sodium percarbonate activated by ferrous sulfate. Water Pollut. Treat. 2020, 8, 66–76.
[72] Eslami, A.; Mehdipour, F.; Lin, K.-Y.A.; Maleksari, H.S.; Mirzaei, F.; Ghanbari, F. Sono-photo activation of percarbonate for the degradation of organic dye: The effect of water matrix and identification of by-products. J. Water Process Eng. 2020, 33, 100998.
[73] Wang, T.; Jia, H.; Guo, X.; Xia, T.; Qu, G.; Sun, Q.; Yin, X. Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chem. Eng. J. 2018, 346, 65–76.
[74] Tang, S.; Yuan, D.; Rao, Y.; Li, M.; Shi, G.; Gu, J.; Zhang, T. Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. J. Hazard. Mater. 2019, 366, 669–676.
[75] Geng, T.; Yi, C.; Yi, R.; Yang, L.; Nawaz, M.I. Mechanism and degradation pathways of bisphenol A in aqueous solution by strong ionization discharge. Water Air Soil Pollut. 2020, 231, 185.
[76] Gao, J.; Duan, X.; O’Shea, K.; Dionysiou, D.D. Degradation and transformation of bisphenol A in UV/sodium percarbonate: Dual role of carbonate radical anion. Water Res. 2020, 171, 115394.
[77] Qiu, Z.; Rao, G.; Wang, L.; Wang, L. Photo-assisted degradation of naphthalene by sodium percarbonate system. Adv. Environ. Prot. 2021, 11, 497–505.
[78] Ortiz-Marin, A.D.; Bandala, E.R.; Ramírez, K.; Moeller-Chávez, G.; Pérez-Estrada, L.; Ramírez-Pereda, B.; Amabilis-Sosa, L.E. Kinetic modeling of UV/H2O2, UV/sodium percarbonate, and UV/potassium peroxymonosulfate processes for albendazole degradation. Reac. Kinet. Mech. Catal. 2022, 135, 639–654.
[79] Li, L.; Guo, R.; Zhang, S.; Yuan, Y. Sustainable and effective degradation of aniline by sodium percarbonate activated with UV in aqueous solution: Kinetics, mechanism and identification of reactive species. Environ. Res. 2022, 207, 112176.
[80] Mohammadi, S.; Moussavi, G.; Yaghmaeian, K.; Giannakis, S. Development of a percarbonate-enhanced Vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation. Chem. Eng. J. 2022, 431, 134064.
[81] Kozak, J.; Włodarczyk-Makuła, M. The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation. Civ. Environ. Eng. Rep. 2018, 28, 124–139.
[82] Kozak, J.; Włodarczyk-Makuła, M. The use of sodium carbonate-hydrogen peroxide (2/3) in the modified Fenton reaction to degradation PAHs in coke wastewater. Proc. 2019, 16, 44–48.
[83] Pieczykolan, B.; Płonka, I.; Barbusiński, K. Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate. Archit. Civ. Eng. Environ. 2016, 9, 135–140.
[84] Tang, P.; Jiang, W.; Lu, S.; Zhang, X.; Xue, Y.; Qiu, Z.; Sui, Q. Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environ. Technol. 2019, 40, 356–364.
[85] Farooq, U.; Sajid, M.; Shan, A.; Wang, X.; Lyu, S. Role of cysteine in enhanced degradation of trichloroethane under ferrous percarbonate system. Chem. Eng. J. 2021, 423, 130221.
[86] Fu, X.; Wei, X.; Zhang, W.; Yan, W.; Wei, P.; Lyu, S. Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. Water Supply 2022, 22, 208–219.
[87] Pan, S.; Zhao, T.; Liu, H.; Li, X.; Zhao, M.; Yuan, D.; Jiao, T.; Zhang, Q.; Tang, S. Enhancing ferric ion/sodium percarbonate Fenton-like reaction with tungsten disulfide cocatalyst for metronidazole decomposition over wide pH range. Chem. Eng. J. 2023, 452, 139245.
[88] Zhou, Z.; Ye, G.; Zong, Y.; Zhao, Z.; Wu. D. Improvement of Fe(III)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism. J. Hazard. Mater. 2024, 464, 132924.
[89] Pang, K.; Fang, G.; Wang, Y.; Huang, Y.; Huang, D.; Liu, X. Synthesis of Mo based/carbon nanocomposistes for water decontamination via percarbonate activation. Catal. Lett. 2024, 154, 2999–3008.
[90] Li, Y.; Dong, H.; Li, L.; Xiao, J.; Xiao, S.; Jin, Z. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. Water Res. 2021, 202, 117451.
[91] Li, Y.; Dong, H.; Xiao, J.; Li, L.; Dong, J.; Huang, D.; Deng, J. Ascorbic acid-enhanced CuO/percarbonate oxidation: Insights into the pH-dependent mechanism. ACS ES&T Eng. 2023, 3, 798–810.
[92] Liu, M.; Ye, Y.; Xu, L.; Gao, T.; Zhong, A.; Song, Z. Recent advances in nanoscale zero-valent iron (nZVI)-based advanced oxidation processes (AOPs): Applications, mechanisms, and future prospects. Nanomaterials 2023, 13, 2830.
[93] Makido, O.; Khovanets’, G.; Kochubei, V.; Yevchuk, I. Nanostructured magnetically sensitive catalysts for the Fenton system: Obtaining, research, application. Chem. Chem. Technol. 2022, 16, 227–236.
[94] Che, M.; Xiao, J.; Shan, C.; Chen, S.; Huang, R.; Zhou, Y.; Cui, M.; Qi, W.; Su, R. Efficient removal of chloroform from groundwater using activated percarbonate by cellulose nanofiber-supported Fe/Cu nanocomposites. Water Res. 2023, 243, 120420.
[95] Rashid, T.; Iqbal, D.; Hazafa, A.; Hussain, S.; Sher, F.; Sher, F. Formulation of zeolite supported nano-metallic catalyst and applications in textile effluent treatment. J. Environ. Chem. Eng. 2020, 8, 104023.
[96] Xiao, Y.; Liu, X.; Huang, Y.; Kang, W.; Wang, Z.; Zheng, H. Roles of hydroxyl and carbonate radicals in bisphenol A degradation via a nanoscale zero-valent iron/percarbonate system: Influencing factors and mechanisms. RSC Adv. 2021, 11, 3636–3644.
[97] Rostami-Javanroudi, S.; Fattahi, N.; Sharafi, K.; Arfaeinia, H.; Moradi, M. Chalcopyrite as an oxidants activator for organic pollutant remediation: A review of mechanisms, parameters, and future perspectives. Heliyon 2023, 9, e19992.