Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Activated Periodates and Sodium Percarbonate in Advanced Oxidation Processes of Organic Pollutants in Aqueous Media: A Review

Yuriy Sukhatskiy1, Zenovii Znak1, Martyn Sozanskyi1, Mariana Shepida1, Parag R. Gogate2, Volodymyr Tsymbaliuk1
Affiliation: 
1 Lviv Polytechnic National University 12, S. Bandery St., Lviv 79013, Ukraine 2 Institute of Chemical Technology, Matunga, Mumbai 40019, India yurii.v.sukhatskyi@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.119
AttachmentSize
PDF icon full_text.pdf594.85 KB
Abstract: 
The methods of periodates and sodium percarbonate activation are considered for planning strategic approaches to increasing the efficiency and intensity of oxidative degradation of organic pollutants in aquatic environments. A classification of periodate activation methods is proposed, including activation methods by external energy effects, catalytic activation methods, and other activation methods (e.g., by hydrogen peroxide, by hydroxylamine, activation in alkaline medium). Activation methods for sodium percarbonate were divided into homogeneous and heterogeneous activation methods.
References: 

[1] Zhang, X.; Yu, X.; Yu, X.; Kamali, M.; Appels, L.; Van der Bruggen, B.; Cabooter, D.; Dewil, R. Efficiency and mechanism of 2,4-dichlorophenol degradation by the UV/ process. Sci. Total Environ. 2021, 782, 146781. https://doi.org/10.1016/j.scitotenv.2021.146781
[2] Sukhatskiy, Y.; Shepida, M.; Sozanskyi, M.; Znak, Z.; Gogate, P.R. Periodate-based advanced oxidation processes for wastewater treatment: A review. Sep. Purif. Technol. 2023, 304, 122305. https://doi.org/10.1016/j.seppur.2022.122305
[3] Djaballah, M.L.; Merouani, S.; Bendjama, H.; Hamdaoui, O. Development of a free radical-based kinetics model for the oxidative degradation of chlorazol black in aqueous solution using periodate photoactivated process. J. Photochem. Photobiol. A: Chem. 2021, 408, 113102. https://doi.org/10.1016/j.jphotochem.2020.113102
[4] Chen, L.; Duan, J.; Du, P.; Sun, W.; Lai, B.; Liu, W. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 2022, 221, 118747. https://doi.org/10.1016/j.watres.2022.118747
[5] Nessaibia, M.; Ghodbane, H.; Ferkous, H.; Merouani, S.; Alam, M.; Balsamo, M.; Benguerba, Y.; Erto, A. Homogenous UV/periodate process for the treatment of acid orange 10 polluted water. Water 2023, 15, 758. https://doi.org/10.3390/w15040758
[6] Niu, L.; Zhang, K.; Jiang, L.; Zhang, M.; Feng, M. Emerging periodate-based oxidation technologies for water decontamination: A state-of-the-art mechanistic review and future perspectives. J. Environ. Manag. 2022, 323, 116241. https://doi.org/10.1016/j.jenvman.2022.116241
[7] Zhang, X.; Kamali, M.; Uleners, T.; Symus, J.; Zhang, S.; Liu, Z.; V. Costa, M.E.; Appels, L.; Cabooter, D.; Dewil, R. UV/TiO2/periodate system for the degradation of organic pollutants – Kinetics, mechanisms and toxicity study. Chem. Eng. J. 2022, 449, 137680. https://doi.org/10.1016/j.cej.2022.137680
[8] Chamekh, H.; Chiha, M.; Ahmedchekkat, F.; Souames, N.E.H. Degradation of Orange G by UV/TiO2/ process: Effect of operational parameters and estimation of electrical energy consumption. Ind. J. Chem. Technol. 2023, 30, 293–307. https://doi.org/ 10.56042/ijct.v30i3.62814
[9] Bendjama, M.; Hamdaoui, O.; Ferkous, H.; Alghyamah, A. Degradation of Safranin O in water by UV/TiO2/ process: Effect of operating conditions and mineralization. Catal. 2022, 12, 1460. https://doi.org/10.3390/catal12111460
[10] Abdel-Aziz, R.; Ahmed, M.A.; Abdel Messih, M.F. A novel UV and visible light driven photocatalyst AgIO4/ZnO nanoparticles with highly enhanced photocatalytic performance for removal of rhodamine B and indigo carmine dyes. J. Photochem. Photobiol. A: Chem. 2020, 389, 112245. https://doi.org/10.1016/j.jphotochem.2019.112245
[11] Ahmed, M.A.; Mahran, B.M.; Abbas, A.M.; Tarek, M.A.; Saed, A.M. Construction of direct Z-scheme AgIO4/TiO2 heterojunctions for exceptional photodegradation of rhodamine B dye. J. Dispers. Sci. Technol. 2020, 43, 349–363. https://doi.org/10.1080/01932691.2020.1841652
[12] Lu, G.; Li, X.; Li, W.; Liu, Y.; Wang, N.; Pan, Z.; Zhang, G.; Zhang, Y.; Lai B. Thermo-activated periodate oxidation process for tetracycline degradation: Kinetics and byproducts transformation pathways. J. Hazard. Mater. 2024, 461, 132696. https://doi.org/10.1016/j.jhazmat.2023.132696
[13] Zong, Y.; Shao, Y.; Zeng, Y.; Shao, B.; Xu, L.; Zhao, Z.; Liu, W.; Wu, D. Enhanced oxidation of organic contaminants by iron(II)-activated periodate: The significance of high-valent iron–oxo species. Environ. Sci. Technol. 2021, 55, 7634–7642. https://doi.org/10.1021/acs.est.1c00375
[14] Seid-Mohammadi, A.; Asgari, G.; Shokoohi, R.; Baziar, M.; Mirzaei, N.; Adabi, S.; Partoei, K. Degradation of phenol using US/periodate/nZVI system from aqueous solutions. Glob. Nest. J. 2019, 21, 360–367. https://doi.org/10.30955/gnj.002990
[15] Zong, Y.; Zhang, H.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, L.; Wu, D. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. J. Hazard. Mater. 2022, 423, 126991. https://doi.org/10.1016/j.jhazmat.2021.126991
[16] Wu, Y.; Tan, X.; Zhao, J.; Ma, J. α-Fe2O3 mediated periodate activation for selective degradation of phenolic compounds via electron transfer pathway under visible irradiation. J. Hazard. Mater. 2023, 454, 131506. https://doi.org/10.1016/j.jhazmat.2023.131506
[17] Wang, Q.; Zeng, H.; Liang, Y.; Cao, Ye.; Xiao, Y.; Ma, J. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals. Chem. Eng. J. 2021, 407, 126738. https://doi.org/10.1016/j.cej.2020.126738
[18] He, L.; Yang, S.; Yang, L.; Shen, S.; Li, Y.; Kong, D.; Chen, Z.; Yang, S.; Wang, J.; Wu, L. et al. Ball milling-assisted preparation of sludge biochar as a novel periodate activator for nonradical degradation of sulfamethoxazole: Insight into the mechanism of enhanced electron transfer. Environ. Pollut. 2023, 316, 120620. https://doi.org/10.1016/j.envpol.2022.120620
[19] Yang, B.; Ma, Q.; Hao, J.; Huang, J.; Wang, Q.; Wang, D.; Zhang, J. Periodate-based advanced oxidation processes: A review focusing on the overlooked role of high-valent iron and manganese species. Chemosphere 2023, 337, 139442. https://doi.org/10.1016/j.chemosphere.2023.139442
[20] Xiang, L.; Almatrafi, E.; Yang, H.; Ye, H.; Qin, F.; Yi, H.; Fu, Y.; Huo, X.; Xia, W.; Li, H. et al. Coupled carbon structure and iron species for multiple periodate-based oxidation reaction. Chem. Eng. J. 2023, 455, 140560. https://doi.org/10.1016/j.cej.2022.140560
[21] Zong, Y.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, J.; Liu, W.; Xu, L.; Wu, D. Trace Mn(II)-catalyzed periodate oxidation of organic contaminants not relying on any transient reactive species: The substrate-dependent dual roles of in-situ formed colloidal MnO2. Chem. Eng. J. 2023, 451, 139106. https://doi.org/10.1016/j.cej.2022.139106
[22] Yu, J.; Qiu, W.; Lin, X.; Wang, Y.; Lu, X.; Yu, Y.; Gu, H.; Heng, S.; Zhang, H.; Ma, J. Periodate activation with stable MgMn2O4 spinel for bisphenol A removal: Radical and non-radical pathways. Chem. Eng. J. 2023, 459, 141574. https://doi.org/10.1016/j.cej.2023.141574
[23] Yang, T.; An, L.; Zeng, G.; Mai, J.; Li, Y.; Lian, J.; Zhang, H.; Li, J.; Cheng, X.; Jia, J. et al. Enhanced hydroxyl radical generation for micropollutant degradation in the In2O3/Vis-LED process through the addition of periodate. Water Res. 2023, 243, 120401. https://doi.org/10.1016/j.watres.2023.120401
[24] Zhang, K.; Ye, C.; Lou, Y.; Yu, X.; Feng, M. Promoting selective water decontamination via boosting activation of periodate by nanostructured Ru-supported Co3O4 catalysts. J. Hazard. Mater. 2023, 442, 130058. https://doi.org/10.1016/j.jhazmat.2022.130058
[25] Chen, W.; Dai, X.; Liu, Z.; Du, B.; Zheng, X.; Ma, D.; Huang, X. Sulfide-modified cobalt silicate activated periodate for nitenpyram degradation: Enhanced radical and non-radical pathway. Chem. Eng. J. 2023, 469, 143922. https://doi.org/10.1016/j.cej.2023.143922
[26] Luo, K.; Shi, Y.; Huang, R.; Wei, X.; Wu, Z.; Zhou, P.; Zhang, H.; Wang, Y.; Xiong, Z.; Lai, B. Activation of periodate by N-doped iron-based porous carbon for degradation of sulfisoxazole: Significance of catalyst-mediated electron transfer mechanism. J. Hazard. Mater. 2023, 457, 131790. https://doi.org/10.1016/j.jhazmat.2023.131790
[27] Long, Y.; Huang, S.; Zhao, S.; Xiao, G.; Sun, J.; Peng, D. Pyrolyzed iron-nitrogen-carbon hybrids for efficient contaminant decomposition via periodate activation: Active site and degradation mechanism. Sep. Purif. Technol. 2023, 317, 123945. https://doi.org/10.1016/j.seppur.2023.123945
[28] Shen, S.; Jiang, W.; Zhao, Q.; He, L.; Ma, Y.; Zhou, X.; Wang, J.; Yang, L.; Chen, Z. Molten-salts assisted preparation of iron-nitrogen-carbon catalyst for efficient degradation of acetaminophen by periodate activation. Sci. Total Environ. 2023, 859, 160001. http://dx.doi.org/10.1016/j.scitotenv.2022.160001
[29] Chen, Y.; Yuan, X.; Jiang, L.; Zhao, Y.; Chen, H.; Shangguan, Z.; Qin, C.; Wang, H. Insights into periodate oxidation of antibiotics mediated by visible-light-induced polymeric carbon nitride: Performance and mechanism. Chem. Eng. J. 2023, 457, 141147. https://doi.org/10.1016/j.cej.2022.141147
[30] Long, Y.; Dai, J.; Zhao, S.; Su, Y.; Wang, Z.; Zhang, Z. Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation. Environ. Sci. Technol. 2021, 55, 5357–5370. https://doi.org/10.1021/acs.est.0c07794
[31] Hu, J.; Zou, Y.; Li, Y.; Yu, Z.; Bao, Y.; Lin, L.; Li, B.; Li, X.-Y. Periodate activation by atomically dispersed Mn on carbon nanotubes for the production of iodate radicals and rapid degradation of sulfadiazine. Chem. Eng. J. 2023, 472, 144862. https://doi.org/10.1016/j.cej.2023.144862
[32] He, L.; Lv, L.; Pillai, S.C.; Wang, H.; Xue, J.; Ma, Y.; Liu, Y.; Chen, Y.; Wu, L.; Zhang, Z. et al. Efficient degradation of diclofenac sodium by periodate activation using Fe/Cu bimetallic modified sewage sludge biochar/UV system. Sci. Total Environ. 2021, 783, 146974. https://doi.org/10.1016/j.scitotenv.2021.146974
[33] Xiao, P.; Yi, X.; Wu, M.; Wang, X.; Zhu, S.; Gao, B.; Liu, Y.; Zhou, H. Catalytic performance and periodate activation mechanism of anaerobic sewage sludge-derived biochar. J. Hazard. Mater. 2022, 424, 127692. https://doi.org/10.1016/j.jhazmat.2021.127692
[34] Yang, H.; Liu, Y.; Zhang, Y.; Liu, L.; Xia, S.; Xue, Q. Secondary pyrolysis oil-based drill-cutting ash for peroxymonosulfate/ periodate activation to remove tetracycline: A comparative study. Sep. Purif. Technol. 2022, 294, 121264. https://doi.org/10.1016/j.seppur.2022.121264
[35] He, L.; Shi, Y.; Chen, Y.; Shen, S.; Xue, J.; Ma, Y.; Zheng, L.; Wu, L.; Zhang, Z.; Yang, L. Iron-manganese oxide loaded sludge biochar as a novel periodate activator for thiacloprid efficient degradation over a wide pH range. Sep. Purif. Technol. 2022, 288, 120703. https://doi.org/10.1016/j.seppur.2022.120703
[36] Fang, G.; Li, J.; Zhang, C.; Qin, F.; Luo, H.; Huang, C.; Qin, D.; Ouyang, Z. Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar. Environ. Pollut. 2022, 300, 118939. https://doi.org/10.1016/j.envpol.2022.118939
[37] Dai, J.; Wang, Z.; Chen, K.; Ding, D.; Yang, S.; Cai, T. Applying a novel advanced oxidation process of biochar activated periodate for the efficient degradation of bisphenol A: Two nonradical pathways. Chem. Eng. J. 2023, 453, 139889. https://doi.org/10.1016/j.cej.2022.139889
[38] Hu, J.; Gong, H.; Liu, X.; Luo, J.; Zhu, N. Target-prepared sludge biochar-derived synergistic Mn and N/O induces high-performance periodate activation for reactive iodine radicals generation towards ofloxacin degradation. J. Hazard. Mater. 2023, 460, 132362. https://doi.org/10.1016/j.jhazmat.2023.132362
[39] Sukhatskiy, Y.; Sozanskyi, M.; Shepida, M.; Znak, Z.; Gogate, P.R. Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Sep. Purif. Technol. 2022, 288, 120651. https://doi.org/10.1016/j.seppur.2022.120651
[40] Chadi, N.E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. H2O2/periodate ( ): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environ. Sci.: Water Res. Technol. 2019, 5, 1113–1123. https://doi.org/10.1016/j.seppur.2022.120651
[41] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Khomyak, S.V.; Mnykh, R.V.; Lysenko, A.V. The decomposition of the benzene in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii 2018, 1, 72–77.
[42] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Vyrsta, K.R. The intensification of the cavitation decomposition of benzene. Voprosy Khimii i Khimicheskoi Tekhnologii 2019, 4, 55–61. https://doi.org/10.32434/0321-4095-2019-125-4-55-61
[43] Yavorskiy, V.; Sukhatskiy, Y.; Znak, Z.; Mnykh, R. Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chem. Chem. Technol. 2016, 10, 507–513. https://doi.org/10.23939/chcht10.04.507
[44] Yavors’kyi, V.Т.; Znak, Z.O.; Sukhats’kyi, Y.V.; Mnykh, R.V. Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Mater. Sci. 2017, 52, 595–600. https://doi.org/10.1007/s11003-017-9995-8
[45] Znak, Z.; Sukhatskiy, Y. The brandon method in modelling the cavitation processing of aqueous media. East.-Eur. J. Enterp. Technol. 2016, 3, 37–42. https://doi.org/10.15587/1729-4061.2016.72539
[46] Sun, H.; He, F.; Choi, W. Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria. Environ. Sci. Technol. 2020, 54, 6427–6437. https://dx.doi.org/10.1021/acs.est.0c00817
[47] Xie, Z.-H.; He, C.-S.; Pei, D.-N.; Dong, Y.; Yang, S.-R.; Xiong, Z.; Zhou, P.; Pan, Z.-C.; Yao, G.; Lai, B. Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chem. Eng. J. 2023, 468, 143778. https://doi.org/10.1016/j.cej.2023.143778
[48] Yu, X.; Kamali, M.; Aken, P.V.; Appels, L.; Van der Bruggen, B.; Dewil, R. Synergistic effects of the combined use of ozone and sodium percarbonate for the oxidative degradation of dichlorvos. J. Water Process Eng. 2021, 39, 101721. https://doi.org/10.1016/j.jwpe.2020.101721
[49] Ma, J.; Yang, X.; Jiang, X.; Wen, J.; Li, J.; Zhong, Y.; Chi, L.; Wang, Y. Percarbonate persistence under different water chemistry conditions. Chem. Eng. J. 2020, 389, 123422. https://doi.org/10.1016/j.cej.2019.123422
[50] Hung, C.-M.; Chen, C.-W.; Huang, C.-P.; Tsai, M.-L.; Wu, C.-H.; Lin, Y.-L.; Cheng, Y.-R.; Dong, C.-D. Efficacy and cytotoxicity of engineered ferromanganese-bearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. J. Hazard. Mater. 2022, 422, 126922. https://doi.org/10.1016/j.jhazmat.2021.126922
[51] Pimentel, J.A.I.; Dong, C.-D.; Garcia-Segura, S.; Abarca, R.R.M.; Chen, C.-W.; de Luna, M.D.G. Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation. Sci. Total Environ. 2021, 781, 146411. https://doi.org/10.1016/j.scitotenv.2021.146411
[52] Huang, J.; Zhou, Z.; Ali, M.; Gu, X.; Danish, M.; Sui, Q.; Lyu, S. Degradation of trichloroethene by citric acid chelated Fe(II) catalyzing sodium percarbonate in the environment of sodium dodecyl sulfate aqueous solution. Chemosphere 2021, 281, 130798. https://doi.org/10.1016/j.chemosphere.2021.130798
[53] Sablas, M.M.; de Luna, M.D.G.; Garcia-Segura, S.; Chen, C.-W.; Chen, C.-F.; Dong, C.-D. Percarbonate mediated advanced oxidation completely degrades recalcitrant pesticide imidacloprid: Role of reactive oxygen species and transformation products. Sep. Purif. Technol. 2020, 250, 117269. https://doi.org/10.1016/j.seppur.2020.117269
[54] Ling, X.; Deng, J.; Ye, C.; Cai, A.; Ruan, S.; Chen, M.; Li, X. Fe(II)-activated sodium percarbonate for improving sludge dewaterability: Experimental and theoretical investigation combined with the evaluation of subsequent utilization. Sci. Total Environ. 2021, 799, 149382. https://doi.org/10.1016/j.scitotenv.2021.149382
[55] Li, Y.J.; Dong, H.R.; Xiao, J.Y.; Li, L.; Chu, D.D.; Hou, X.Z.; Xiang, S.X.; Dong, Q.X.; Zhang, H.X. Advanced oxidation processes for water purification using percarbonate: Insights into oxidation mechanisms, challenges, and enhancing strategies. J. Hazard. Mater. 2023, 442, 130014. https://doi.org/10.1016/j.jhazmat.2022.130014
[56] Ma, J.; Xia, X.C.; Ma, Y.; Luo, Y.J.; Zhong, Y.J. Stability of dissolved percarbonate and its implications for groundwater remediation. Chemosph. 2018, 205, 41–44. https://doi.org/10.1016/j.chemosphere.2018.04.084
[57] Zhang, B.T.; Kuang, L.L.; Teng, Y.G.; Fan, M.H.; Ma, Y. Application of percarbonate and peroxymonocarbonate in decontamination technologies. J. Environ. Sci. 2021, 105, 100–115. https://doi.org/10.1016/j.jes.2020.12.031
[58] Thanekar, P.; Lakshmi, N.J.; Shah, M.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of dimethoate using combined approaches based on hydrodynamic cavitation and advanced oxidation processes. Process Saf. Environ. Prot. 2020, 143, 222–230. https://doi.org/10.1016/j.psep.2020.07.002
[59] Thanekar, P.; Gogate, P.R. Improved processes involving hydrodynamic cavitation and oxidants for treatment of real industrial effluent. Sep. Purif. Technol. 2020, 239, 116563. https://doi.org/10.1016/j.seppur.2020.116563
[60] Odehnalová, K.; Přibilová, P.; Maršálková, E.; Zezulka, Š.; Pochylý, F.; Rudolf, P.; Maršálek, B. Hydrodynamic cavitation-enhanced activation of sodium percarbonate for estrogen removal. Water Sci. Technol. 2023, 88, 2905–2916. https://doi.org/10.2166/wst.2023.382
[61] Dular, M.; Griessler-Bulc, T.; Gutierrez-Aguirre, I.; Heath, E.; Kosjek, T.; Klemenčič, A.K.; Oder, M.; Petkovšek, M.; Rački, N.; Ravnikar M. et al. Use of hydrodynamic cavitation in (waste)water treatment. Ultrason. Sonochem. 2016, 29, 577–588. https://doi.org/10.1016/j.ultsonch.2015.10.010
[62] Maršalek, B.; Zezulka, S.; Maršalkova, E.; Pochyly, F; Rudolf, P. Synergistic effects of trace concentrations of hydrogen peroxide used in a novel hydrodynamic cavitation device allows for selective removal of cyanobacteria. Chem. Eng. J. 2020, 382, 122383. https://doi.org/10.1016/j.cej.2019.122383
[63] Panda, D.; Saharan, V.K.; Manickam, S. Controlled hydrodynamic cavitation: A review of recent advances and perspectives for greener processing. Processes 2020, 8, 220. https://doi.org/10.3390/pr8020220
[64] Badve, M.; Gogate, P.; Pandit, A.; Csoka, L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep. Purif. Technol. 2013, 106, 15–21. https://doi.org/10.1016/j.seppur.2012.12.029
[65] Zheng, H.X.; Zheng, Y.; Zhu, J.S. Recent developments in hydrodynamic cavitation reactors: Cavitation mechanism, reactor design, and applications. Eng. 2022, 19, 180–198. https://doi.org/10.1016/j.eng.2022.04.027
[66] Amin, L.P.; Gogate, P.R.; Burgess, A.E.; Bremner, D.H. Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry. Chem. Eng. J. 2010, 156, 165–169. https://doi.org/10.1016/j.cej.2009.09.043
[67] Kohno, M.; Mokudai, T.; Ozawa, T.; Niwano, Y. Free radical formation from sonolysis of water in the presence of different gases. J. Clin. Biochem. Nutr. 2011, 49, 96–101. https://doi.org/10.3164/jcbn.10-130
[68] Thanekar, P.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrason. Sonochem. 2021, 70, 105296. https://doi.org/10.1016/j.ultsonch.2020.105296
[69] Sukhatskiy, Y.; Znak, Z.; Zin, O.; Chupinskyi, D. Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chem. Chem. Technol. 2021, 15, 284–290. https://doi.org/10.23939/chcht15.02.284
[70] Torres, R.A.; Pétrier, C.; Combet, E.; Carrier, M.; Pulgarin, C. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrason. Sonochem. 2008, 15, 605–611. https://doi.org/10.1016/j.ultsonch.2007.07.003
[71] Lin, X.; He, J.; Xu, L.; Fang, Y.; Rao, G. Degradation of metronidazole by ultrasound-assisted sodium percarbonate activated by ferrous sulfate. Water Pollut. Treat. 2020, 8, 66–76. https://doi.org/10.12677/wpt.2020.83010
[72] Eslami, A.; Mehdipour, F.; Lin, K.-Y.A.; Maleksari, H.S.; Mirzaei, F.; Ghanbari, F. Sono-photo activation of percarbonate for the degradation of organic dye: The effect of water matrix and identification of by-products. J. Water Process Eng. 2020, 33, 100998. https://doi.org/10.1016/j.jwpe.2019.100998
[73] Wang, T.; Jia, H.; Guo, X.; Xia, T.; Qu, G.; Sun, Q.; Yin, X. Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chem. Eng. J. 2018, 346, 65–76. https://doi.org/10.1016/j.cej.2018.04.024
[74] Tang, S.; Yuan, D.; Rao, Y.; Li, M.; Shi, G.; Gu, J.; Zhang, T. Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. J. Hazard. Mater. 2019, 366, 669–676. https://doi.org/10.1016/j.jhazmat.2018.12.056
[75] Geng, T.; Yi, C.; Yi, R.; Yang, L.; Nawaz, M.I. Mechanism and degradation pathways of bisphenol A in aqueous solution by strong ionization discharge. Water Air Soil Pollut. 2020, 231, 185. https://doi.org/10.1007/s11270-020-04563-5
[76] Gao, J.; Duan, X.; O’Shea, K.; Dionysiou, D.D. Degradation and transformation of bisphenol A in UV/sodium percarbonate: Dual role of carbonate radical anion. Water Res. 2020, 171, 115394. https://doi.org/10.1016/j.watres.2019.115394
[77] Qiu, Z.; Rao, G.; Wang, L.; Wang, L. Photo-assisted degradation of naphthalene by sodium percarbonate system. Adv. Environ. Prot. 2021, 11, 497–505. https://doi.org/10.12677/AEP.2021.113055
[78] Ortiz-Marin, A.D.; Bandala, E.R.; Ramírez, K.; Moeller-Chávez, G.; Pérez-Estrada, L.; Ramírez-Pereda, B.; Amabilis-Sosa, L.E. Kinetic modeling of UV/H2O2, UV/sodium percarbonate, and UV/potassium peroxymonosulfate processes for albendazole degradation. Reac. Kinet. Mech. Catal. 2022, 135, 639–654. https://doi.org/10.1007/s11144-021-02152-z
[79] Li, L.; Guo, R.; Zhang, S.; Yuan, Y. Sustainable and effective degradation of aniline by sodium percarbonate activated with UV in aqueous solution: Kinetics, mechanism and identification of reactive species. Environ. Res. 2022, 207, 112176. https://doi.org/10.1016/j.envres.2021.112176
[80] Mohammadi, S.; Moussavi, G.; Yaghmaeian, K.; Giannakis, S. Development of a percarbonate-enhanced Vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation. Chem. Eng. J. 2022, 431, 134064. https://doi.org/10.1016/j.cej.2021.134064
[81] Kozak, J.; Włodarczyk-Makuła, M. The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation. Civ. Environ. Eng. Rep. 2018, 28, 124–139. https://doi.org/10.2478/ceer-2018-0024
[82] Kozak, J.; Włodarczyk-Makuła, M. The use of sodium carbonate-hydrogen peroxide (2/3) in the modified Fenton reaction to degradation PAHs in coke wastewater. Proc. 2019, 16, 44–48. https://doi.org/10.3390/proceedings2019016044
[83] Pieczykolan, B.; Płonka, I.; Barbusiński, K. Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate. Archit. Civ. Eng. Environ. 2016, 9, 135–140. https://doi.org/10.21307/acee-2016-060
[84] Tang, P.; Jiang, W.; Lu, S.; Zhang, X.; Xue, Y.; Qiu, Z.; Sui, Q. Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environ. Technol. 2019, 40, 356–364. https://doi.org/10.1080/09593330.2017.1393012
[85] Farooq, U.; Sajid, M.; Shan, A.; Wang, X.; Lyu, S. Role of cysteine in enhanced degradation of trichloroethane under ferrous percarbonate system. Chem. Eng. J. 2021, 423, 130221. https://doi.org/10.1016/j.cej.2021.130221
[86] Fu, X.; Wei, X.; Zhang, W.; Yan, W.; Wei, P.; Lyu, S. Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. Water Supply 2022, 22, 208–219. https://doi.org/10.2166/ws.2021.278
[87] Pan, S.; Zhao, T.; Liu, H.; Li, X.; Zhao, M.; Yuan, D.; Jiao, T.; Zhang, Q.; Tang, S. Enhancing ferric ion/sodium percarbonate Fenton-like reaction with tungsten disulfide cocatalyst for metronidazole decomposition over wide pH range. Chem. Eng. J. 2023, 452, 139245. https://doi.org/10.1016/j.cej.2022.139245
[88] Zhou, Z.; Ye, G.; Zong, Y.; Zhao, Z.; Wu. D. Improvement of Fe(III)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism. J. Hazard. Mater. 2024, 464, 132924. https://doi.org/10.1016/j.jhazmat.2023.132924
[89] Pang, K.; Fang, G.; Wang, Y.; Huang, Y.; Huang, D.; Liu, X. Synthesis of Mo based/carbon nanocomposistes for water decontamination via percarbonate activation. Catal. Lett. 2024, 154, 2999–3008. https://doi.org/10.1007/s10562-023-04517-6
[90] Li, Y.; Dong, H.; Li, L.; Xiao, J.; Xiao, S.; Jin, Z. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. Water Res. 2021, 202, 117451. https://doi.org/10.1016/j.watres.2021.117451
[91] Li, Y.; Dong, H.; Xiao, J.; Li, L.; Dong, J.; Huang, D.; Deng, J. Ascorbic acid-enhanced CuO/percarbonate oxidation: Insights into the pH-dependent mechanism. ACS ES&T Eng. 2023, 3, 798–810. https://doi.org/10.1021/acsestengg.2c00410
[92] Liu, M.; Ye, Y.; Xu, L.; Gao, T.; Zhong, A.; Song, Z. Recent advances in nanoscale zero-valent iron (nZVI)-based advanced oxidation processes (AOPs): Applications, mechanisms, and future prospects. Nanomaterials 2023, 13, 2830. https://doi.org/10.3390/nano13212830
[93] Makido, O.; Khovanets’, G.; Kochubei, V.; Yevchuk, I. Nanostructured magnetically sensitive catalysts for the Fenton system: Obtaining, research, application. Chem. Chem. Technol. 2022, 16, 227–236. https://doi.org/10.23939/chcht16.02.227
[94] Che, M.; Xiao, J.; Shan, C.; Chen, S.; Huang, R.; Zhou, Y.; Cui, M.; Qi, W.; Su, R. Efficient removal of chloroform from groundwater using activated percarbonate by cellulose nanofiber-supported Fe/Cu nanocomposites. Water Res. 2023, 243, 120420. https://doi.org/10.1016/j.watres.2023.120420
[95] Rashid, T.; Iqbal, D.; Hazafa, A.; Hussain, S.; Sher, F.; Sher, F. Formulation of zeolite supported nano-metallic catalyst and applications in textile effluent treatment. J. Environ. Chem. Eng. 2020, 8, 104023. https://doi.org/10.1016/j.jece.2020.104023
[96] Xiao, Y.; Liu, X.; Huang, Y.; Kang, W.; Wang, Z.; Zheng, H. Roles of hydroxyl and carbonate radicals in bisphenol A degradation via a nanoscale zero-valent iron/percarbonate system: Influencing factors and mechanisms. RSC Adv. 2021, 11, 3636–3644. https://doi.org/10.1039/D0RA08395J
[97] Rostami-Javanroudi, S.; Fattahi, N.; Sharafi, K.; Arfaeinia, H.; Moradi, M. Chalcopyrite as an oxidants activator for organic pollutant remediation: A review of mechanisms, parameters, and future perspectives. Heliyon 2023, 9, e19992. https://doi.org/10.1016/j.heliyon.2023.e19992