Activated Periodates and Sodium Percarbonate in Advanced Oxidation Processes of Organic Pollutants in Aqueous Media: A Review
Attachment | Size |
---|---|
full_text.pdf | 594.85 KB |
[1] Zhang, X.; Yu, X.; Yu, X.; Kamali, M.; Appels, L.; Van der Bruggen, B.; Cabooter, D.; Dewil, R. Efficiency and mechanism of 2,4-dichlorophenol degradation by the UV/ process. Sci. Total Environ. 2021, 782, 146781. https://doi.org/10.1016/j.scitotenv.2021.146781
https://doi.org/10.1016/j.scitotenv.2021.146781
[2] Sukhatskiy, Y.; Shepida, M.; Sozanskyi, M.; Znak, Z.; Gogate, P.R. Periodate-based advanced oxidation processes for wastewater treatment: A review. Sep. Purif. Technol. 2023, 304, 122305. https://doi.org/10.1016/j.seppur.2022.122305
https://doi.org/10.1016/j.seppur.2022.122305
[3] Djaballah, M.L.; Merouani, S.; Bendjama, H.; Hamdaoui, O. Development of a free radical-based kinetics model for the oxidative degradation of chlorazol black in aqueous solution using periodate photoactivated process. J. Photochem. Photobiol. A: Chem. 2021, 408, 113102. https://doi.org/10.1016/j.jphotochem.2020.113102
https://doi.org/10.1016/j.jphotochem.2020.113102
[4] Chen, L.; Duan, J.; Du, P.; Sun, W.; Lai, B.; Liu, W. Accurate identification of radicals by in-situ electron paramagnetic resonance in ultraviolet-based homogenous advanced oxidation processes. Water Res. 2022, 221, 118747. https://doi.org/10.1016/j.watres.2022.118747
https://doi.org/10.1016/j.watres.2022.118747
[5] Nessaibia, M.; Ghodbane, H.; Ferkous, H.; Merouani, S.; Alam, M.; Balsamo, M.; Benguerba, Y.; Erto, A. Homogenous UV/periodate process for the treatment of acid orange 10 polluted water. Water 2023, 15, 758. https://doi.org/10.3390/w15040758
https://doi.org/10.3390/w15040758
[6] Niu, L.; Zhang, K.; Jiang, L.; Zhang, M.; Feng, M. Emerging periodate-based oxidation technologies for water decontamination: A state-of-the-art mechanistic review and future perspectives. J. Environ. Manag. 2022, 323, 116241. https://doi.org/10.1016/j.jenvman.2022.116241
https://doi.org/10.1016/j.jenvman.2022.116241
[7] Zhang, X.; Kamali, M.; Uleners, T.; Symus, J.; Zhang, S.; Liu, Z.; V. Costa, M.E.; Appels, L.; Cabooter, D.; Dewil, R. UV/TiO2/periodate system for the degradation of organic pollutants - Kinetics, mechanisms and toxicity study. Chem. Eng. J. 2022, 449, 137680. https://doi.org/10.1016/j.cej.2022.137680
https://doi.org/10.1016/j.cej.2022.137680
[8] Chamekh, H.; Chiha, M.; Ahmedchekkat, F.; Souames, N.E.H. Degradation of Orange G by UV/TiO2/ process: Effect of operational parameters and estimation of electrical energy consumption. Ind. J. Chem. Technol. 2023, 30, 293-307. https://doi.org/ 10.56042/ijct.v30i3.62814
[9] Bendjama, M.; Hamdaoui, O.; Ferkous, H.; Alghyamah, A. Degradation of Safranin O in water by UV/TiO2/ process: Effect of operating conditions and mineralization. Catal. 2022, 12, 1460. https://doi.org/10.3390/catal12111460
https://doi.org/10.3390/catal12111460
[10] Abdel-Aziz, R.; Ahmed, M.A.; Abdel Messih, M.F. A novel UV and visible light driven photocatalyst AgIO4/ZnO nanoparticles with highly enhanced photocatalytic performance for removal of rhodamine B and indigo carmine dyes. J. Photochem. Photobiol. A: Chem. 2020, 389, 112245. https://doi.org/10.1016/j.jphotochem.2019.112245
https://doi.org/10.1016/j.jphotochem.2019.112245
[11] Ahmed, M.A.; Mahran, B.M.; Abbas, A.M.; Tarek, M.A.; Saed, A.M. Construction of direct Z-scheme AgIO4/TiO2 heterojunctions for exceptional photodegradation of rhodamine B dye. J. Dispers. Sci. Technol. 2020, 43, 349-363. https://doi.org/10.1080/01932691.2020.1841652
https://doi.org/10.1080/01932691.2020.1841652
[12] Lu, G.; Li, X.; Li, W.; Liu, Y.; Wang, N.; Pan, Z.; Zhang, G.; Zhang, Y.; Lai B. Thermo-activated periodate oxidation process for tetracycline degradation: Kinetics and byproducts transformation pathways. J. Hazard. Mater. 2024, 461, 132696. https://doi.org/10.1016/j.jhazmat.2023.132696
https://doi.org/10.1016/j.jhazmat.2023.132696
[13] Zong, Y.; Shao, Y.; Zeng, Y.; Shao, B.; Xu, L.; Zhao, Z.; Liu, W.; Wu, D. Enhanced oxidation of organic contaminants by iron(II)-activated periodate: The significance of high-valent iron-oxo species. Environ. Sci. Technol. 2021, 55, 7634-7642. https://doi.org/10.1021/acs.est.1c00375
https://doi.org/10.1021/acs.est.1c00375
[14] Seid-Mohammadi, A.; Asgari, G.; Shokoohi, R.; Baziar, M.; Mirzaei, N.; Adabi, S.; Partoei, K. Degradation of phenol using US/periodate/nZVI system from aqueous solutions. Glob. Nest. J. 2019, 21, 360-367. https://doi.org/10.30955/gnj.002990
https://doi.org/10.30955/gnj.002990
[15] Zong, Y.; Zhang, H.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, L.; Wu, D. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. J. Hazard. Mater. 2022, 423, 126991. https://doi.org/10.1016/j.jhazmat.2021.126991
https://doi.org/10.1016/j.jhazmat.2021.126991
[16] Wu, Y.; Tan, X.; Zhao, J.; Ma, J. α-Fe2O3 mediated periodate activation for selective degradation of phenolic compounds via electron transfer pathway under visible irradiation. J. Hazard. Mater. 2023, 454, 131506. https://doi.org/10.1016/j.jhazmat.2023.131506
https://doi.org/10.1016/j.jhazmat.2023.131506
[17] Wang, Q.; Zeng, H.; Liang, Y.; Cao, Ye.; Xiao, Y.; Ma, J. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals. Chem. Eng. J. 2021, 407, 126738. https://doi.org/10.1016/j.cej.2020.126738
https://doi.org/10.1016/j.cej.2020.126738
[18] He, L.; Yang, S.; Yang, L.; Shen, S.; Li, Y.; Kong, D.; Chen, Z.; Yang, S.; Wang, J.; Wu, L. et al. Ball milling-assisted preparation of sludge biochar as a novel periodate activator for nonradical degradation of sulfamethoxazole: Insight into the mechanism of enhanced electron transfer. Environ. Pollut. 2023, 316, 120620. https://doi.org/10.1016/j.envpol.2022.120620
https://doi.org/10.1016/j.envpol.2022.120620
[19] Yang, B.; Ma, Q.; Hao, J.; Huang, J.; Wang, Q.; Wang, D.; Zhang, J. Periodate-based advanced oxidation processes: A review focusing on the overlooked role of high-valent iron and manganese species. Chemosphere 2023, 337, 139442. https://doi.org/10.1016/j.chemosphere.2023.139442
https://doi.org/10.1016/j.chemosphere.2023.139442
[20] Xiang, L.; Almatrafi, E.; Yang, H.; Ye, H.; Qin, F.; Yi, H.; Fu, Y.; Huo, X.; Xia, W.; Li, H. et al. Coupled carbon structure and iron species for multiple periodate-based oxidation reaction. Chem. Eng. J. 2023, 455, 140560. https://doi.org/10.1016/j.cej.2022.140560
https://doi.org/10.1016/j.cej.2022.140560
[21] Zong, Y.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, J.; Liu, W.; Xu, L.; Wu, D. Trace Mn(II)-catalyzed periodate oxidation of organic contaminants not relying on any transient reactive species: The substrate-dependent dual roles of in-situ formed colloidal MnO2. Chem. Eng. J. 2023, 451, 139106. https://doi.org/10.1016/j.cej.2022.139106
https://doi.org/10.1016/j.cej.2022.139106
[22] Yu, J.; Qiu, W.; Lin, X.; Wang, Y.; Lu, X.; Yu, Y.; Gu, H.; Heng, S.; Zhang, H.; Ma, J. Periodate activation with stable MgMn2O4 spinel for bisphenol A removal: Radical and non-radical pathways. Chem. Eng. J. 2023, 459, 141574. https://doi.org/10.1016/j.cej.2023.141574
https://doi.org/10.1016/j.cej.2023.141574
[23] Yang, T.; An, L.; Zeng, G.; Mai, J.; Li, Y.; Lian, J.; Zhang, H.; Li, J.; Cheng, X.; Jia, J. et al. Enhanced hydroxyl radical generation for micropollutant degradation in the In2O3/Vis-LED process through the addition of periodate. Water Res. 2023, 243, 120401. https://doi.org/10.1016/j.watres.2023.120401
https://doi.org/10.1016/j.watres.2023.120401
[24] Zhang, K.; Ye, C.; Lou, Y.; Yu, X.; Feng, M. Promoting selective water decontamination via boosting activation of periodate by nanostructured Ru-supported Co3O4 catalysts. J. Hazard. Mater. 2023, 442, 130058. https://doi.org/10.1016/j.jhazmat.2022.130058
https://doi.org/10.1016/j.jhazmat.2022.130058
[25] Chen, W.; Dai, X.; Liu, Z.; Du, B.; Zheng, X.; Ma, D.; Huang, X. Sulfide-modified cobalt silicate activated periodate for nitenpyram degradation: Enhanced radical and non-radical pathway. Chem. Eng. J. 2023, 469, 143922. https://doi.org/10.1016/j.cej.2023.143922
https://doi.org/10.1016/j.cej.2023.143922
[26] Luo, K.; Shi, Y.; Huang, R.; Wei, X.; Wu, Z.; Zhou, P.; Zhang, H.; Wang, Y.; Xiong, Z.; Lai, B. Activation of periodate by N-doped iron-based porous carbon for degradation of sulfisoxazole: Significance of catalyst-mediated electron transfer mechanism. J. Hazard. Mater. 2023, 457, 131790. https://doi.org/10.1016/j.jhazmat.2023.131790
https://doi.org/10.1016/j.jhazmat.2023.131790
[27] Long, Y.; Huang, S.; Zhao, S.; Xiao, G.; Sun, J.; Peng, D. Pyrolyzed iron-nitrogen-carbon hybrids for efficient contaminant decomposition via periodate activation: Active site and degradation mechanism. Sep. Purif. Technol. 2023, 317, 123945. https://doi.org/10.1016/j.seppur.2023.123945
https://doi.org/10.1016/j.seppur.2023.123945
[28] Shen, S.; Jiang, W.; Zhao, Q.; He, L.; Ma, Y.; Zhou, X.; Wang, J.; Yang, L.; Chen, Z. Molten-salts assisted preparation of iron-nitrogen-carbon catalyst for efficient degradation of acetaminophen by periodate activation. Sci. Total Environ. 2023, 859, 160001. http://dx.doi.org/10.1016/j.scitotenv.2022.160001
https://doi.org/10.1016/j.scitotenv.2022.160001
[29] Chen, Y.; Yuan, X.; Jiang, L.; Zhao, Y.; Chen, H.; Shangguan, Z.; Qin, C.; Wang, H. Insights into periodate oxidation of antibiotics mediated by visible-light-induced polymeric carbon nitride: Performance and mechanism. Chem. Eng. J. 2023, 457, 141147. https://doi.org/10.1016/j.cej.2022.141147
https://doi.org/10.1016/j.cej.2022.141147
[30] Long, Y.; Dai, J.; Zhao, S.; Su, Y.; Wang, Z.; Zhang, Z. Atomically dispersed cobalt sites on graphene as efficient periodate activators for selective organic pollutant degradation. Environ. Sci. Technol. 2021, 55, 5357-5370. https://doi.org/10.1021/acs.est.0c07794
https://doi.org/10.1021/acs.est.0c07794
[31] Hu, J.; Zou, Y.; Li, Y.; Yu, Z.; Bao, Y.; Lin, L.; Li, B.; Li, X.-Y. Periodate activation by atomically dispersed Mn on carbon nanotubes for the production of iodate radicals and rapid degradation of sulfadiazine. Chem. Eng. J. 2023, 472, 144862. https://doi.org/10.1016/j.cej.2023.144862
https://doi.org/10.1016/j.cej.2023.144862
[32] He, L.; Lv, L.; Pillai, S.C.; Wang, H.; Xue, J.; Ma, Y.; Liu, Y.; Chen, Y.; Wu, L.; Zhang, Z. et al. Efficient degradation of diclofenac sodium by periodate activation using Fe/Cu bimetallic modified sewage sludge biochar/UV system. Sci. Total Environ. 2021, 783, 146974. https://doi.org/10.1016/j.scitotenv.2021.146974
https://doi.org/10.1016/j.scitotenv.2021.146974
[33] Xiao, P.; Yi, X.; Wu, M.; Wang, X.; Zhu, S.; Gao, B.; Liu, Y.; Zhou, H. Catalytic performance and periodate activation mechanism of anaerobic sewage sludge-derived biochar. J. Hazard. Mater. 2022, 424, 127692. https://doi.org/10.1016/j.jhazmat.2021.127692
https://doi.org/10.1016/j.jhazmat.2021.127692
[34] Yang, H.; Liu, Y.; Zhang, Y.; Liu, L.; Xia, S.; Xue, Q. Secondary pyrolysis oil-based drill-cutting ash for peroxymonosulfate/ periodate activation to remove tetracycline: A comparative study. Sep. Purif. Technol. 2022, 294, 121264. https://doi.org/10.1016/j.seppur.2022.121264
https://doi.org/10.1016/j.seppur.2022.121264
[35] He, L.; Shi, Y.; Chen, Y.; Shen, S.; Xue, J.; Ma, Y.; Zheng, L.; Wu, L.; Zhang, Z.; Yang, L. Iron-manganese oxide loaded sludge biochar as a novel periodate activator for thiacloprid efficient degradation over a wide pH range. Sep. Purif. Technol. 2022, 288, 120703. https://doi.org/10.1016/j.seppur.2022.120703
https://doi.org/10.1016/j.seppur.2022.120703
[36] Fang, G.; Li, J.; Zhang, C.; Qin, F.; Luo, H.; Huang, C.; Qin, D.; Ouyang, Z. Periodate activated by manganese oxide/biochar composites for antibiotic degradation in aqueous system: Combined effects of active manganese species and biochar. Environ. Pollut. 2022, 300, 118939. https://doi.org/10.1016/j.envpol.2022.118939
https://doi.org/10.1016/j.envpol.2022.118939
[37] Dai, J.; Wang, Z.; Chen, K.; Ding, D.; Yang, S.; Cai, T. Applying a novel advanced oxidation process of biochar activated periodate for the efficient degradation of bisphenol A: Two nonradical pathways. Chem. Eng. J. 2023, 453, 139889. https://doi.org/10.1016/j.cej.2022.139889
https://doi.org/10.1016/j.cej.2022.139889
[38] Hu, J.; Gong, H.; Liu, X.; Luo, J.; Zhu, N. Target-prepared sludge biochar-derived synergistic Mn and N/O induces high-performance periodate activation for reactive iodine radicals generation towards ofloxacin degradation. J. Hazard. Mater. 2023, 460, 132362. https://doi.org/10.1016/j.jhazmat.2023.132362
https://doi.org/10.1016/j.jhazmat.2023.132362
[39] Sukhatskiy, Y.; Sozanskyi, M.; Shepida, M.; Znak, Z.; Gogate, P.R. Decolorization of an aqueous solution of methylene blue using a combination of ultrasound and peroxate process. Sep. Purif. Technol. 2022, 288, 120651. https://doi.org/10.1016/j.seppur.2022.120651
https://doi.org/10.1016/j.seppur.2022.120651
[40] Chadi, N.E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. H2O2/periodate ( ): a novel advanced oxidation technology for the degradation of refractory organic pollutants. Environ. Sci.: Water Res. Technol. 2019, 5, 1113-1123. https://doi.org/10.1016/j.seppur.2022.120651
https://doi.org/10.1016/j.seppur.2022.120651
[41] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Khomyak, S.V.; Mnykh, R.V.; Lysenko, A.V. The decomposition of the benzene in cavitation fields. Voprosy Khimii i Khimicheskoi Tekhnologii 2018, 1, 72-77.
[42] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Vyrsta, K.R. The intensification of the cavitation decomposition of benzene. Voprosy Khimii i Khimicheskoi Tekhnologii 2019, 4, 55-61. https://doi.org/10.32434/0321-4095-2019-125-4-55-61
https://doi.org/10.32434/0321-4095-2019-125-4-55-61
[43] Yavorskiy, V.; Sukhatskiy, Y.; Znak, Z.; Mnykh, R. Investigations of cavitation processes in different types of emitters using sonochemical analysis. Chem. Chem. Technol. 2016, 10, 507-513. https://doi.org/10.23939/chcht10.04.507
https://doi.org/10.23939/chcht10.04.507
[44] Yavors'kyi, V.Т.; Znak, Z.O.; Sukhats'kyi, Y.V.; Mnykh, R.V. Energy characteristics of treatment of corrosive aqueous media in hydrodynamic cavitators. Mater. Sci. 2017, 52, 595-600. https://doi.org/10.1007/s11003-017-9995-8
https://doi.org/10.1007/s11003-017-9995-8
[45] Znak, Z.; Sukhatskiy, Y. The brandon method in modelling the cavitation processing of aqueous media. East.-Eur. J. Enterp. Technol. 2016, 3, 37-42. https://doi.org/10.15587/1729-4061.2016.72539
https://doi.org/10.15587/1729-4061.2016.72539
[46] Sun, H.; He, F.; Choi, W. Production of reactive oxygen species by the reaction of periodate and hydroxylamine for rapid removal of organic pollutants and waterborne bacteria. Environ. Sci. Technol. 2020, 54, 6427-6437. https://dx.doi.org/10.1021/acs.est.0c00817
https://doi.org/10.1021/acs.est.0c00817
[47] Xie, Z.-H.; He, C.-S.; Pei, D.-N.; Dong, Y.; Yang, S.-R.; Xiong, Z.; Zhou, P.; Pan, Z.-C.; Yao, G.; Lai, B. Review of characteristics, generation pathways and detection methods of singlet oxygen generated in advanced oxidation processes (AOPs). Chem. Eng. J. 2023, 468, 143778. https://doi.org/10.1016/j.cej.2023.143778
https://doi.org/10.1016/j.cej.2023.143778
[48] Yu, X.; Kamali, M.; Aken, P.V.; Appels, L.; Van der Bruggen, B.; Dewil, R. Synergistic effects of the combined use of ozone and sodium percarbonate for the oxidative degradation of dichlorvos. J. Water Process Eng. 2021, 39, 101721. https://doi.org/10.1016/j.jwpe.2020.101721
https://doi.org/10.1016/j.jwpe.2020.101721
[49] Ma, J.; Yang, X.; Jiang, X.; Wen, J.; Li, J.; Zhong, Y.; Chi, L.; Wang, Y. Percarbonate persistence under different water chemistry conditions. Chem. Eng. J. 2020, 389, 123422. https://doi.org/10.1016/j.cej.2019.123422
https://doi.org/10.1016/j.cej.2019.123422
[50] Hung, C.-M.; Chen, C.-W.; Huang, C.-P.; Tsai, M.-L.; Wu, C.-H.; Lin, Y.-L.; Cheng, Y.-R.; Dong, C.-D. Efficacy and cytotoxicity of engineered ferromanganese-bearing sludge-derived biochar for percarbonate-induced phthalate ester degradation. J. Hazard. Mater. 2022, 422, 126922. https://doi.org/10.1016/j.jhazmat.2021.126922
https://doi.org/10.1016/j.jhazmat.2021.126922
[51] Pimentel, J.A.I.; Dong, C.-D.; Garcia-Segura, S.; Abarca, R.R.M.; Chen, C.-W.; de Luna, M.D.G. Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation. Sci. Total Environ. 2021, 781, 146411. https://doi.org/10.1016/j.scitotenv.2021.146411
https://doi.org/10.1016/j.scitotenv.2021.146411
[52] Huang, J.; Zhou, Z.; Ali, M.; Gu, X.; Danish, M.; Sui, Q.; Lyu, S. Degradation of trichloroethene by citric acid chelated Fe(II) catalyzing sodium percarbonate in the environment of sodium dodecyl sulfate aqueous solution. Chemosphere 2021, 281, 130798. https://doi.org/10.1016/j.chemosphere.2021.130798
https://doi.org/10.1016/j.chemosphere.2021.130798
[53] Sablas, M.M.; de Luna, M.D.G.; Garcia-Segura, S.; Chen, C.-W.; Chen, C.-F.; Dong, C.-D. Percarbonate mediated advanced oxidation completely degrades recalcitrant pesticide imidacloprid: Role of reactive oxygen species and transformation products. Sep. Purif. Technol. 2020, 250, 117269. https://doi.org/10.1016/j.seppur.2020.117269
https://doi.org/10.1016/j.seppur.2020.117269
[54] Ling, X.; Deng, J.; Ye, C.; Cai, A.; Ruan, S.; Chen, M.; Li, X. Fe(II)-activated sodium percarbonate for improving sludge dewaterability: Experimental and theoretical investigation combined with the evaluation of subsequent utilization. Sci. Total Environ. 2021, 799, 149382. https://doi.org/10.1016/j.scitotenv.2021.149382
https://doi.org/10.1016/j.scitotenv.2021.149382
[55] Li, Y.J.; Dong, H.R.; Xiao, J.Y.; Li, L.; Chu, D.D.; Hou, X.Z.; Xiang, S.X.; Dong, Q.X.; Zhang, H.X. Advanced oxidation processes for water purification using percarbonate: Insights into oxidation mechanisms, challenges, and enhancing strategies. J. Hazard. Mater. 2023, 442, 130014. https://doi.org/10.1016/j.jhazmat.2022.130014
https://doi.org/10.1016/j.jhazmat.2022.130014
[56] Ma, J.; Xia, X.C.; Ma, Y.; Luo, Y.J.; Zhong, Y.J. Stability of dissolved percarbonate and its implications for groundwater remediation. Chemosph. 2018, 205, 41-44. https://doi.org/10.1016/j.chemosphere.2018.04.084
https://doi.org/10.1016/j.chemosphere.2018.04.084
[57] Zhang, B.T.; Kuang, L.L.; Teng, Y.G.; Fan, M.H.; Ma, Y. Application of percarbonate and peroxymonocarbonate in decontamination technologies. J. Environ. Sci. 2021, 105, 100-115. https://doi.org/10.1016/j.jes.2020.12.031
https://doi.org/10.1016/j.jes.2020.12.031
[58] Thanekar, P.; Lakshmi, N.J.; Shah, M.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of dimethoate using combined approaches based on hydrodynamic cavitation and advanced oxidation processes. Process Saf. Environ. Prot. 2020, 143, 222-230. https://doi.org/10.1016/j.psep.2020.07.002
https://doi.org/10.1016/j.psep.2020.07.002
[59] Thanekar, P.; Gogate, P.R. Improved processes involving hydrodynamic cavitation and oxidants for treatment of real industrial effluent. Sep. Purif. Technol. 2020, 239, 116563. https://doi.org/10.1016/j.seppur.2020.116563
https://doi.org/10.1016/j.seppur.2020.116563
[60] Odehnalová, K.; Přibilová, P.; Maršálková, E.; Zezulka, Š.; Pochylý, F.; Rudolf, P.; Maršálek, B. Hydrodynamic cavitation-enhanced activation of sodium percarbonate for estrogen removal. Water Sci. Technol. 2023, 88, 2905-2916. https://doi.org/10.2166/wst.2023.382
https://doi.org/10.2166/wst.2023.382
[61] Dular, M.; Griessler-Bulc, T.; Gutierrez-Aguirre, I.; Heath, E.; Kosjek, T.; Klemenčič, A.K.; Oder, M.; Petkovšek, M.; Rački, N.; Ravnikar M. et al. Use of hydrodynamic cavitation in (waste)water treatment. Ultrason. Sonochem. 2016, 29, 577-588. https://doi.org/10.1016/j.ultsonch.2015.10.010
https://doi.org/10.1016/j.ultsonch.2015.10.010
[62] Maršalek, B.; Zezulka, S.; Maršalkova, E.; Pochyly, F; Rudolf, P. Synergistic effects of trace concentrations of hydrogen peroxide used in a novel hydrodynamic cavitation device allows for selective removal of cyanobacteria. Chem. Eng. J. 2020, 382, 122383. https://doi.org/10.1016/j.cej.2019.122383
https://doi.org/10.1016/j.cej.2019.122383
[63] Panda, D.; Saharan, V.K.; Manickam, S. Controlled hydrodynamic cavitation: A review of recent advances and perspectives for greener processing. Processes 2020, 8, 220. https://doi.org/10.3390/pr8020220
https://doi.org/10.3390/pr8020220
[64] Badve, M.; Gogate, P.; Pandit, A.; Csoka, L. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry. Sep. Purif. Technol. 2013, 106, 15-21. https://doi.org/10.1016/j.seppur.2012.12.029
https://doi.org/10.1016/j.seppur.2012.12.029
[65] Zheng, H.X.; Zheng, Y.; Zhu, J.S. Recent developments in hydrodynamic cavitation reactors: Cavitation mechanism, reactor design, and applications. Eng. 2022, 19, 180-198. https://doi.org/10.1016/j.eng.2022.04.027
https://doi.org/10.1016/j.eng.2022.04.027
[66] Amin, L.P.; Gogate, P.R.; Burgess, A.E.; Bremner, D.H. Optimization of a hydrodynamic cavitation reactor using salicylic acid dosimetry. Chem. Eng. J. 2010, 156, 165-169. https://doi.org/10.1016/j.cej.2009.09.043
https://doi.org/10.1016/j.cej.2009.09.043
[67] Kohno, M.; Mokudai, T.; Ozawa, T.; Niwano, Y. Free radical formation from sonolysis of water in the presence of different gases. J. Clin. Biochem. Nutr. 2011, 49, 96-101. https://doi.org/10.3164/jcbn.10-130
https://doi.org/10.3164/jcbn.10-130
[68] Thanekar, P.; Gogate, P.R.; Znak, Z.; Sukhatskiy, Y.; Mnykh, R. Degradation of benzene present in wastewater using hydrodynamic cavitation in combination with air. Ultrason. Sonochem. 2021, 70, 105296. https://doi.org/10.1016/j.ultsonch.2020.105296
https://doi.org/10.1016/j.ultsonch.2020.105296
[69] Sukhatskiy, Y.; Znak, Z.; Zin, O.; Chupinskyi, D. Ultrasonic cavitation in wastewater treatment from azo dye methyl orange. Chem. Chem. Technol. 2021, 15, 284-290. https://doi.org/10.23939/chcht15.02.284
https://doi.org/10.23939/chcht15.02.284
[70] Torres, R.A.; Pétrier, C.; Combet, E.; Carrier, M.; Pulgarin, C. Ultrasonic cavitation applied to the treatment of bisphenol A. Effect of sonochemical parameters and analysis of BPA by-products. Ultrason. Sonochem. 2008, 15, 605-611. https://doi.org/10.1016/j.ultsonch.2007.07.003
https://doi.org/10.1016/j.ultsonch.2007.07.003
[71] Lin, X.; He, J.; Xu, L.; Fang, Y.; Rao, G. Degradation of metronidazole by ultrasound-assisted sodium percarbonate activated by ferrous sulfate. Water Pollut. Treat. 2020, 8, 66-76. https://doi.org/10.12677/wpt.2020.83010
https://doi.org/10.12677/WPT.2020.83010
[72] Eslami, A.; Mehdipour, F.; Lin, K.-Y.A.; Maleksari, H.S.; Mirzaei, F.; Ghanbari, F. Sono-photo activation of percarbonate for the degradation of organic dye: The effect of water matrix and identification of by-products. J. Water Process Eng. 2020, 33, 100998. https://doi.org/10.1016/j.jwpe.2019.100998
https://doi.org/10.1016/j.jwpe.2019.100998
[73] Wang, T.; Jia, H.; Guo, X.; Xia, T.; Qu, G.; Sun, Q.; Yin, X. Evaluation of the potential of dimethyl phthalate degradation in aqueous using sodium percarbonate activated by discharge plasma. Chem. Eng. J. 2018, 346, 65-76. https://doi.org/10.1016/j.cej.2018.04.024
https://doi.org/10.1016/j.cej.2018.04.024
[74] Tang, S.; Yuan, D.; Rao, Y.; Li, M.; Shi, G.; Gu, J.; Zhang, T. Percarbonate promoted antibiotic decomposition in dielectric barrier discharge plasma. J. Hazard. Mater. 2019, 366, 669-676. https://doi.org/10.1016/j.jhazmat.2018.12.056
https://doi.org/10.1016/j.jhazmat.2018.12.056
[75] Geng, T.; Yi, C.; Yi, R.; Yang, L.; Nawaz, M.I. Mechanism and degradation pathways of bisphenol A in aqueous solution by strong ionization discharge. Water Air Soil Pollut. 2020, 231, 185. https://doi.org/10.1007/s11270-020-04563-5
https://doi.org/10.1007/s11270-020-04563-5
[76] Gao, J.; Duan, X.; O'Shea, K.; Dionysiou, D.D. Degradation and transformation of bisphenol A in UV/sodium percarbonate: Dual role of carbonate radical anion. Water Res. 2020, 171, 115394. https://doi.org/10.1016/j.watres.2019.115394
https://doi.org/10.1016/j.watres.2019.115394
[77] Qiu, Z.; Rao, G.; Wang, L.; Wang, L. Photo-assisted degradation of naphthalene by sodium percarbonate system. Adv. Environ. Prot. 2021, 11, 497-505. https://doi.org/10.12677/AEP.2021.113055
https://doi.org/10.12677/AEP.2021.113055
[78] Ortiz-Marin, A.D.; Bandala, E.R.; Ramírez, K.; Moeller-Chávez, G.; Pérez-Estrada, L.; Ramírez-Pereda, B.; Amabilis-Sosa, L.E. Kinetic modeling of UV/H2O2, UV/sodium percarbonate, and UV/potassium peroxymonosulfate processes for albendazole degradation. Reac. Kinet. Mech. Catal. 2022, 135, 639-654. https://doi.org/10.1007/s11144-021-02152-z
https://doi.org/10.1007/s11144-021-02152-z
[79] Li, L.; Guo, R.; Zhang, S.; Yuan, Y. Sustainable and effective degradation of aniline by sodium percarbonate activated with UV in aqueous solution: Kinetics, mechanism and identification of reactive species. Environ. Res. 2022, 207, 112176. https://doi.org/10.1016/j.envres.2021.112176
https://doi.org/10.1016/j.envres.2021.112176
[80] Mohammadi, S.; Moussavi, G.; Yaghmaeian, K.; Giannakis, S. Development of a percarbonate-enhanced Vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation. Chem. Eng. J. 2022, 431, 134064. https://doi.org/10.1016/j.cej.2021.134064
https://doi.org/10.1016/j.cej.2021.134064
[81] Kozak, J.; Włodarczyk-Makuła, M. The use of sodium percarbonate in the Fenton reaction for the PAHs oxidation. Civ. Environ. Eng. Rep. 2018, 28, 124-139. https://doi.org/10.2478/ceer-2018-0024
https://doi.org/10.2478/ceer-2018-0024
[82] Kozak, J.; Włodarczyk-Makuła, M. The use of sodium carbonate-hydrogen peroxide (2/3) in the modified Fenton reaction to degradation PAHs in coke wastewater. Proc. 2019, 16, 44-48. https://doi.org/10.3390/proceedings2019016044
https://doi.org/10.3390/proceedings2019016044
[83] Pieczykolan, B.; Płonka, I.; Barbusiński, K. Discoloration of dye wastewater by modified UV-Fenton process with sodium percarbonate. Archit. Civ. Eng. Environ. 2016, 9, 135-140. https://doi.org/10.21307/acee-2016-060
https://doi.org/10.21307/acee-2016-060
[84] Tang, P.; Jiang, W.; Lu, S.; Zhang, X.; Xue, Y.; Qiu, Z.; Sui, Q. Enhanced degradation of carbon tetrachloride by sodium percarbonate activated with ferrous ion in the presence of ethyl alcohol. Environ. Technol. 2019, 40, 356-364. https://doi.org/10.1080/09593330.2017.1393012
https://doi.org/10.1080/09593330.2017.1393012
[85] Farooq, U.; Sajid, M.; Shan, A.; Wang, X.; Lyu, S. Role of cysteine in enhanced degradation of trichloroethane under ferrous percarbonate system. Chem. Eng. J. 2021, 423, 130221. https://doi.org/10.1016/j.cej.2021.130221
https://doi.org/10.1016/j.cej.2021.130221
[86] Fu, X.; Wei, X.; Zhang, W.; Yan, W.; Wei, P.; Lyu, S. Enhanced effects of reducing agent on oxalate chelated Fe(II) catalyzed percarbonate system for benzene degradation. Water Supply 2022, 22, 208-219. https://doi.org/10.2166/ws.2021.278
https://doi.org/10.2166/ws.2021.278
[87] Pan, S.; Zhao, T.; Liu, H.; Li, X.; Zhao, M.; Yuan, D.; Jiao, T.; Zhang, Q.; Tang, S. Enhancing ferric ion/sodium percarbonate Fenton-like reaction with tungsten disulfide cocatalyst for metronidazole decomposition over wide pH range. Chem. Eng. J. 2023, 452, 139245. https://doi.org/10.1016/j.cej.2022.139245
https://doi.org/10.1016/j.cej.2022.139245
[88] Zhou, Z.; Ye, G.; Zong, Y.; Zhao, Z.; Wu. D. Improvement of Fe(III)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism. J. Hazard. Mater. 2024, 464, 132924. https://doi.org/10.1016/j.jhazmat.2023.132924
https://doi.org/10.1016/j.jhazmat.2023.132924
[89] Pang, K.; Fang, G.; Wang, Y.; Huang, Y.; Huang, D.; Liu, X. Synthesis of Mo based/carbon nanocomposistes for water decontamination via percarbonate activation. Catal. Lett. 2024, 154, 2999-3008. https://doi.org/10.1007/s10562-023-04517-6
https://doi.org/10.1007/s10562-023-04517-6
[90] Li, Y.; Dong, H.; Li, L.; Xiao, J.; Xiao, S.; Jin, Z. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite. Water Res. 2021, 202, 117451. https://doi.org/10.1016/j.watres.2021.117451
https://doi.org/10.1016/j.watres.2021.117451
[91] Li, Y.; Dong, H.; Xiao, J.; Li, L.; Dong, J.; Huang, D.; Deng, J. Ascorbic acid-enhanced CuO/percarbonate oxidation: Insights into the pH-dependent mechanism. ACS ES&T Eng. 2023, 3, 798-810. https://doi.org/10.1021/acsestengg.2c00410
https://doi.org/10.1021/acsestengg.2c00410
[92] Liu, M.; Ye, Y.; Xu, L.; Gao, T.; Zhong, A.; Song, Z. Recent advances in nanoscale zero-valent iron (nZVI)-based advanced oxidation processes (AOPs): Applications, mechanisms, and future prospects. Nanomaterials 2023, 13, 2830. https://doi.org/10.3390/nano13212830
https://doi.org/10.3390/nano13212830
[93] Makido, O.; Khovanets', G.; Kochubei, V.; Yevchuk, I. Nanostructured magnetically sensitive catalysts for the Fenton system: Obtaining, research, application. Chem. Chem. Technol. 2022, 16, 227-236. https://doi.org/10.23939/chcht16.02.227
https://doi.org/10.23939/chcht16.02.227
[94] Che, M.; Xiao, J.; Shan, C.; Chen, S.; Huang, R.; Zhou, Y.; Cui, M.; Qi, W.; Su, R. Efficient removal of chloroform from groundwater using activated percarbonate by cellulose nanofiber-supported Fe/Cu nanocomposites. Water Res. 2023, 243, 120420. https://doi.org/10.1016/j.watres.2023.120420
https://doi.org/10.1016/j.watres.2023.120420
[95] Rashid, T.; Iqbal, D.; Hazafa, A.; Hussain, S.; Sher, F.; Sher, F. Formulation of zeolite supported nano-metallic catalyst and applications in textile effluent treatment. J. Environ. Chem. Eng. 2020, 8, 104023. https://doi.org/10.1016/j.jece.2020.104023
https://doi.org/10.1016/j.jece.2020.104023
[96] Xiao, Y.; Liu, X.; Huang, Y.; Kang, W.; Wang, Z.; Zheng, H. Roles of hydroxyl and carbonate radicals in bisphenol A degradation via a nanoscale zero-valent iron/percarbonate system: Influencing factors and mechanisms. RSC Adv. 2021, 11, 3636-3644. https://doi.org/10.1039/D0RA08395J
https://doi.org/10.1039/D0RA08395J
[97] Rostami-Javanroudi, S.; Fattahi, N.; Sharafi, K.; Arfaeinia, H.; Moradi, M. Chalcopyrite as an oxidants activator for organic pollutant remediation: A review of mechanisms, parameters, and future perspectives. Heliyon 2023, 9, e19992. https://doi.org/10.1016/j.heliyon.2023.e19992
https://doi.org/10.1016/j.heliyon.2023.e19992