Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Study on Regularities of Polyethylene Waste Low-Temperature Pyrolysis

Ksenia Hrynyshyn1, Taras Chervinskyy1, Igor Helzhynskyy1, Volodymyr Skorokhoda1
Affiliation: 
1 Lviv Polytechnic National University 12 S. Bandery St., 79013 Lviv, Ukraine chervinskijt@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.04.923
AttachmentSize
PDF icon full_text.pdf255.95 KB
Abstract: 
A low-temperature pyrolysis with pyrocondensate as a target product is one of the options for processing polyethylene waste. The fractional composition and properties of the pyrocondensate obtained at different temperatures and times were studied. Pyrocondensate was separated into gasoline, diesel fractions, and the residue. The composition and properties of mentioned fractions were established and related to the conditions of the pyrolysis process. X-ray fluorescence analysis of pyrocondensate and narrow fractions isolated from it was carried out.
References: 

[1] Hamad, K.; Kaseem, M.; Deri, F. Recycling of Waste from Polymer Materials: An Overview of the Recent Works. Polym. Degrad. Stab. 2013, 98, 2801-2812. https://doi.org/10.1016/j.polymdegradstab.2013.09.025
https://doi.org/10.1016/j.polymdegradstab.2013.09.025

[2] Ali, S.H.; Garforth, A.A.; Harris, D.H.; Rawlence, D.J.; Uemichi, Y. Polymer Waste Recycling Over "Used" Catalysts. Catal. Today 2002, 75, 247-255. https://doi.org/10.1016/S0920-5861(02)00076-7
https://doi.org/10.1016/S0920-5861(02)00076-7

[3] Sheldon, R.A.; Norton, M. Green Chemistry and the Plastic Pollution Challenge: Towards a Circular Economy. Green Chem. 2020, 22, 6310-6322. doi:https://doi.org/10.1039/D0GC02630A
https://doi.org/10.1039/D0GC02630A

[4] Su, L.; Xiong, X.; Zhang, Y.; Wu, C.; Xu, X.; Sun, C.; Shi, H. Global Transportation of Plastics and Microplastics: A Critical Review of Pathways and Influences. Sci. Total Environ. 2022, 831, 154884. https://doi.org/10.1016/j.scitotenv.2022.154884
https://doi.org/10.1016/j.scitotenv.2022.154884

[5] Datta, J.; Kopczyńska, P. From Polymer Waste to Potential Main Industrial Products: Actual State of Recycling and Recovering. Crit. Rev. Environ. Sci. Technol. 2016, 46, 905-946. https://doi.org/10.1080/10643389.2016.1180227
https://doi.org/10.1080/10643389.2016.1180227

[6] Kemona, A.; Piotrowska, M. Polyurethane Recycling and Disposal: Methods and Prospects. Polymers 2020, 2, 1752. https://doi.org/10.3390/polym12081752
https://doi.org/10.3390/polym12081752

[7] Al-Maaded, M., Madi, N.K., Kahraman, R., Hodzic, A.; Ozerkan, N.G. An Overview of Solid Waste Management and Plastic Recycling in Qatar. J. Polym. Environ. 2012, 20,186-194. https://doi.org/10.1007/s10924-011-0332-2
https://doi.org/10.1007/s10924-011-0332-2

[8] Panda, A.K.; Singh, R.K.; Mishra, D.K. Thermolysis of Waste Plastics to Liquid Fuel: A Suitable Method for Plastic Waste Management and Manufacture of Value Added Products-A World Prospective. Renew. Sustain. Energy Rev. 2010, 14, 233-248. https://doi.org/10.1016/j.rser.2009.07.005
https://doi.org/10.1016/j.rser.2009.07.005

[9] Bratychak, M.M.; Hrynyshyn, O.B.; Prysyazhnyy, Yu.V.; Pushak, A.P. Naftopolimerni smoly iz funktsiy nymy hrupamy. Syntez vlastyvosti, zastosuvannya; Publishing House of Lviv Polytechnic National University: Lviv, 2016.

[10] Bratychak, M.; Brostow, W.; Grynyshyn, O.; Shyshchak, O. Synthesis and Characterization of Petroleum Resins with Epoxy Groups. Mater. Res. Innov. 2003, 7, 167-171. https://doi.org/10.1007/s10019-003-0243-5
https://doi.org/10.1007/s10019-003-0243-5

[11] Skibitskiy, V.; Grynyshyn, O.; Bratychak, M.; Waclawek, W. Obtaining of Petroleum Resins Using Pyrolysis By-Products. 4. Resins with Carboxy Groups. Ecol. Chem. Eng. 2004, 11, 41-51.

[12] Bratychak, M.; Grynyshyn, O.; Shyshchak, O.; Romashko, I.; Waclawek, W. Obtaining of Petroleum Resins Using Pyrolysis By-Products. 12. Petroleum Resins with Hydroxyl Groups. Ecol. Chem. Eng. 2007, 14, 225-234.

[13] Bratychak, M.; Shust, O.; Chervinskyy, T.; Shyshchak, O.; Waclawek, W. Obtaining of Petroleum Resins Using Pyrolysis By-Products. 14. Petroleum Resins with Fluorine Atoms. Ecol. Chem. Eng. 2011, 18, 49-54.

[14] Chervinskyy, T.; Bratychak, M.; Gagin, M.; Waclawek, W. Obtaining of Petroleum Resins Using Pyrolysis By-Products. 6. Petroleum Resins with Epoxy Groups as Active Components of Epoxy-Polymeric Composites. Ecol. Chem. Eng. 2004, 11, 1225-1231.

[15] Grynyshyn, O.; Bratychak, M.; Krynytskiy, V.; Donchak, V. Petroleum Resins for Bitumens Modification. Chem. Chem. Technol., 2008, 2, 47-53. http://dx.doi.org/10.23939/chcht02.01.047
https://doi.org/10.23939/chcht02.01.047

[16] Pyshyev, S.; Lypko, Y.; Chervinskyy, T.; Fedevych, O.; Kułażyński, M.; Pstrowska, K. Application of Tyre Derived Pyrolysis Oil as a Fuel Component. S. Afr. J. Chem. Eng. 2023, 43, 342-347. https://doi.org/10.1016/j.sajce.2022.12.003
https://doi.org/10.1016/j.sajce.2022.12.003

[17] Ryzhkov, S.; Rudyuk, N.; Markina, L. Research of Thermal Conductivity of the Condensed Mass of the Whole Waste Tires and Determination of their Optimum Arrangement in the Pyrolysis Reactor. EasternEuropean J. Enterp. Technol. 2016, 82, 12-18. http://dx.doi.org/10.15587/1729-4061.2016.73557
https://doi.org/10.15587/1729-4061.2016.73557

[18] Hrynyshyn, K.; Skorokhoda, V.; Chervinskyy, T. Study on the Composition and Properties of Pyrolysis Pyrocondensate of Used Tires. Chem. Chem. Technol. 2022, 16, 159-163. http://dx.doi.org/10.23939/chcht16.01.159
https://doi.org/10.23939/chcht16.01.159

[19] Mikulionok, I. A State of Art and Prospects of Plastic Solid Waste Management. Energy Technologies & Resource Saving 2021, 2, 52-73. https://doi.org/10.33070/etars.2.2021.05
https://doi.org/10.33070/etars.2.2021.05

[20] Phakedi, D.; Ude, A.U.; Oladijo, P.O. Co-pyrolysis of Polymer Waste and Carbon-Based Matter as an Alternative for Waste Management in the Developing World. J. Anal. Appl. Pyrolysis 2021, 155, 105077. https://doi.org/10.1016/j.jaap.2021.105077
https://doi.org/10.1016/j.jaap.2021.105077

[21] Jung, S.; Choi, D.; Park, Y.-K.; Tsang, Y.F.; Klinghoffer, N.B.; Kim, K.-H.; Kwon, E.E. Functional Use of CO2 for Environmentally Benign Production of Hydrogen Through Catalytic Pyrolysis of Polymeric Waste. Chem. Eng. J. 2020, 399, 125889. https://doi.org/10.1016/j.cej.2020.125889
https://doi.org/10.1016/j.cej.2020.125889

[22] Srinivasan, S.; Valsadwala, A.S.; Begum, S.S.; Samui, A.B. Experimental Investigation on the Influence of Novel Catalyst in Co-Pyrolysis of Polymeric Waste: Characterization of Oil and Preparation of Char Reinforced Composites. J. Clean. Prod. 2021, 316, 128225. https://doi.org/10.1016/j.jclepro.2021.128225
https://doi.org/10.1016/j.jclepro.2021.128225

[23] Zhang, L.; Bao, Z.; Xia, S.; Lu, Q.; Walters, K.B. Catalytic Pyrolysis of Biomass and Polymer Wastes. Catalysts 2018, 8, 659. https://doi.org/10.3390/catal8120659
https://doi.org/10.3390/catal8120659

[24] Topilnytskyy, P.; Grynyshyn, O.; Machynskyy, O. Tehnologia pervynnoi pererobky nafty i gazu. Publishing House of Lviv Polytechnic National University: Lviv, 2014.