Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Investigation of the Dispersed-Phase Distribution of Organochlorine Pesticides, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Natural Water Systems

Mikhaylo Milyukin1, Maksym Gorban1
Affiliation: 
1 A.V. Dumansky Institute of Colloid Chemistry and Water Chemistry of National Academy of Sciences of Ukraine, 42 Vernadsky St., Kyiv, 03680, Ukraine m_milyukin@ukr.net
DOI: 
https://doi.org/10.23939/chcht17.04.846
AttachmentSize
PDF icon full_text.pdf655.66 KB
Abstract: 
The article analyzes the patterns of the dispersed-phase distribution of organic ecotoxicants, namely organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs), in natural water systems. The relationship between the dispersed-phase distribution of individual OCPs, PCBs, and PAHs and the logarithm of the octanol-water partition coefficient log Ko/w (hydrophobicity coefficient) was established. It was shown that the water-soluble part of individual organic ecotoxicants decreases with an increase in their hydrophobicity coefficient. Eight of the given eleven correlations are clear, significant and reliable. The influence of the characteristics of the water system on the dispersed-phase distribution of organic ecotoxicants was also investigated. It was shown that the total water-soluble part of OCPs, PCBs, and PAHs decreases with an increase in the chemical oxygen demand (COD), biological oxygen demand (BOD), and the total concentration of heavy metals (Cr, Ni, Cu, Mn, Zn, Cd, Pb). Four of the nine relevant correlations are clear, significant, and reliable.
References: 

[1] Milyukin, M.V.; Goncharuk, V.V. Chemical Monitoring of Organic Ecotoxicants in Water Systems; Naukova dumka: Kyiv, 2016.

[2] Fiedler, H.; Kallenborn, R.; de Boer, J.; Sydnes, L.K. The Stockholm Convention: A Tool for the Global Regulation of Persistent Organic Pollutants. Chemistry International 2019, 41, 4-11. https://doi.org/10.1515/ci-2019-0202
https://doi.org/10.1515/ci-2019-0202

[3] Milyukin, M.V.; Goncharuk, V.V. Chemical Monitoring of Organic Ecotoxicants in Aqueous Systems. J. Water Chem. Technol. 2019, 41, 307-312. https://doi.org/10.3103/S1063455X19050060
https://doi.org/10.3103/S1063455X19050060

[4] Ho, K.T.; Konovets, I.M.; Terletskaya, A.V.; Milyukin, M.V.; Lyashenko, A.V.; Shitikova, L.I.; Shevchuk, L.I.; Afanasiev, S.O.; Krot, Yu.G.; Zorina-Sakharova et al. Contaminants, Mutagenicity and Toxicity in the Surface Waters of Kyiv, Ukraine. Mar. Pollut. Bull. 2020, 155, 111153. https://doi.org/10.1016/j.marpolbul.2020.111153
https://doi.org/10.1016/j.marpolbul.2020.111153

[5] Milyukin, M.V.; Gorban, M.V.; Skrynnyk, M.M. Monitoring and Distribution of Organochlorine Pesticides, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Surface River Water and Suspended Particulate Matter. Methods Objects Chem. Anal. 2019, 14, 117-129. https://doi.org/10.17721/moca.2019.117-129
https://doi.org/10.17721/moca.2019.117-129

[6] Montuori, P.; Aurino, S.; Garzonio, F.; Triassi, M. Polychlorinated Biphenyls and Organochlorine Pesticides in Tiber River and Estuary: Occurrence, Distribution and Ecological Risk. Sci. Total Environ. 2016, 571, 1001-1016. https://doi.org/10.1016/j.scitotenv.2016.07.089
https://doi.org/10.1016/j.scitotenv.2016.07.089

[7] Wurl., O.; Obbard, J.P.; Lam, P.K.S. Distribution of Organochlorines in the Dissolved and Suspended Phase of the Sea-Surface Microlayer and Seawater in Hong Kong, China. Mar. Pollut. Bull. 2006, 52, 768-777. https://doi.org/10.1016/j.marpolbul.2005.11.024
https://doi.org/10.1016/j.marpolbul.2005.11.024

[8] Tang, Z.; Yang, Z.; Shen, Z.; Niu, J.; Cai, Y. Residues of Organochlorine Pesticides in Water and Suspended Particulate Matter from the Yangtze River Catchment of Wuhan, China. Environ. Monit. Assess. 2008, 137, 427-439. https://doi.org/10.1007/s10661-007-9778-z
https://doi.org/10.1007/s10661-007-9778-z

[9] Zhang, L.; Shi, S.; Dong, L.; Zhang T.; Zhou, L.; Huang, Y. Concentrations and Possible Sources of Polychlorinated Biphenyls in the Surface Water of the Yangtze River Delta, China. Chemosphere 2011, 85, 399-405. https://doi.org/10.1016/j.chemosphere.2011.07.064
https://doi.org/10.1016/j.chemosphere.2011.07.064

[10] Patrolecco, L.; Ademollo, N.; Capri, S.; Pagnotta, R; Polesello, S. Occurrence of Priority Hazardous PAHs in Water, Suspended Particulate Matter, Sediment and Common Eels (Anguilla anguilla) in the Urban Stretch of the River Tiber (Italy). Chemosphere 2010, 81, 1386-1392. https://doi.org/10.1016/j.chemosphere.2010.09.027
https://doi.org/10.1016/j.chemosphere.2010.09.027

[11] Zheng, B.; Wang, L.; Lei, K.; Nan, B. Distribution and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Water, Suspended Particulate Matter and Sediment from Daliao River Estuary and the Adjacent Area, China. Chemosphere 2016, 149, 91-100. https://doi.org/10.1016/j.chemosphere.2016.01.039
https://doi.org/10.1016/j.chemosphere.2016.01.039

[12] Milyukin, M.V.; Gorban, M.V. Patterns of the Disperse-Phase Distribution of Organic Ecotoxicants in the Water of the World River Systems. Methods Objects Chem. Anal. 2022, 17, 133-140. https://doi.org/10.17721/moca.2022.133-140
https://doi.org/10.17721/moca.2022.133-140

[13] Klochenko, P.D. Amines Endo- and Exometabolites of Algae. Gidrobiologicheskiy zhurnal 1994, 30, 42-62.

[14] Petrov, A.; Nevrova, E.; Terletskaya, A.; Milyukin, M.; Demchenko, V. Structure and Taxonomic Diversity of Benthic Diatom Assemblage in a Polluted Marine Environment (Balaklava Bay, Black Sea). Pol. Bot. J. 2010, 55, 183-197.

[15] Heemken, O.P.; Stachel, B.; Theobald, N; Wenclawiak, B.W. Temporal Variability of Organic Micropollutants in Suspended Particulate Matter of the River Elbe at Hamburg and the River Mulde at Dessau, Germany. Arch. Environ. Contam. Toxicol. 2000, 38, 11-31. https://doi.org/10.1007/s002449910003
https://doi.org/10.1007/s002449910003

[16] Li, W.; Yang, H.; Gao, Q.; Pan, H.; Yang, H. Residues of Organochlorine Pesticides in water and Suspended Particulate Matter from Xiangshan Bay, East China Sea. Bull. Environ. Contam. Toxicol. 2012, 89, 811-815. https://doi.org/10.1007/s00128-012-0777-6
https://doi.org/10.1007/s00128-012-0777-6

[17] Cruzeiro, C.; Pardal, M.A.; Rocha, E.; Rocha, M.J. Occurrence and Seasonal Loads of Pesticides in Surface Water and Suspended Particulate Matter from a Wetland Of Worldwide Interest - the Ria Formosa Lagoon, Portugal. Environ. Monit. Assess. 2015, 187, 669. https://doi.org/10.1007/s10661-015-4824-8
https://doi.org/10.1007/s10661-015-4824-8

[18] Guhr, H.; Karrasch, B.; Spott, D. Shifts in the Processes of Oxygen and Nutrient Balances in the River Elbe since the Transformation of the Economic Structur. Acta Hydroch. Hydrob. 2000, 28, 155-161. https://doi.org/10.1002/1521-401X(200003)28:3%3C155::AID-AHEH155%3E3.0.CO;2-R
https://doi.org/10.1002/1521-401X(200003)28:3<155::AID-AHEH155>3.0.CO;2-R

[19] Wang, X.; Han, J.; Bi, C.; Huang, X.; Jia, J., Chen, Z. Distribution, Sources, and Risk Assessment of Polychlorinated Biphenyls in Surface Waters and Sediments of Rivers in Shanghai, China. Front. Earth Sci. 2017, 11, 283-296. https://doi.org/10.1007/s11707-016-0590-3
https://doi.org/10.1007/s11707-016-0590-3

[20] Niu, L.; Cai, H.; Van Gelder, P.H.A.J.M.; Luo, P.; Liu, F.; Yang, X. Dynamics of Polycyclic Aromatic Hydrocarbons (PAHs) in Water Column of Pearl River Estuary (China): Seasonal Pattern, Environmental Fate and Source Implication. Appl. Geochem. 2018, 90, 39-49. https://doi.org/10.1016/j.apgeochem.2017.12.014
https://doi.org/10.1016/j.apgeochem.2017.12.014

[21] Maldonado, C.; Bayona, J.M.; Bodineau, L. Sources, Distribution and Water Column Processes of Aliphatic and Polycyclic Aromatic Hydrocarbons in the Northwestern Black Sea Water. Environ. Sci. Technol. 1999, 33, 2693-2702. https://doi.org/10.1021/es9811647
https://doi.org/10.1021/es9811647

[22] Unificirovannye metody issledovanija kachestva vod, ch. 1, t. 1; SJeV, 1987.

[23] Pidlisnyuk, V.; Harrington, J. JR; Melnyk, Y.; Vystavna, Y. Fluctuations of Annual Precipitation and Water Resources Quality in Ukraine. Chem. Chem. Technol. 2016, 10, 621-629. https://doi.org/10.23939/chcht10.04si.621
https://doi.org/10.23939/chcht10.04si.621

[24] Nedzarek, A.; Czerniejewski, P. The Edible Tissues of the Major European Population of the Invasive Chinese Mitten Crab (Eriocheir sinensis) in the Elbe River, Germany, as a Valuable and Safe Complement in Essential Elements to the Human Diet. J. Food Compos. Anal. 2020, 96, 103713. https://doi.org/10.1016/j.jfca.2020.103713
https://doi.org/10.1016/j.jfca.2020.103713

[25] Zhu, Z.; Deng, Q.; Zhou, H.; Ouyang, T.; Kuang, Y.; Huang, N.; Qiao, Y. Water Pollution and Degradation in Pearl River Delta, South China. Ambio 2002, 31, 226-230. https://doi.org/10.1579/0044-7447-31.3.226
https://doi.org/10.1579/0044-7447-31.3.226

[26] Geng, J.; Wang, Y.; Luo, H. Distribution, Sources, and Fluxes of Heavy Metals in the Pearl River Delta, South China. Mar. Pollut. Bull. 2015, 101, 914-921. https://doi.org/10.1016/j.marpolbul.2015.10.066
https://doi.org/10.1016/j.marpolbul.2015.10.066

[27] La Vigna, F.; Ciadamidaro, S.; Mazza, R.; Mancini, L. Water Quality and Relationship between Superficial and Ground Water in Rome (Aniene River Basin, Central Italy). Environ. Earth Sci. 2010, 60, 1267-1279. https://doi.org/10.1007/s12665-009-0267-2
https://doi.org/10.1007/s12665-009-0267-2

[28] Montuori, P.; Aurino, S.; Garzonio, F.; Nardone, A.; Triassi, M. Estimation of Heavy Metal Loads from Tiber River to the Tyrrhenian Sea and Environmental Quality Assessment. Environ. Sci. Pollut. Res. 2016, 23, 23694-23713. https://doi.org/10.1007/s11356-016-7557-5
https://doi.org/10.1007/s11356-016-7557-5

[29] Zhao, J.; Lin, L.; Yang, K.; Liu, Q.; Qian, G. Influences of Land Use on Water Quality in a Reticular River Network Area: A Case Study in Shanghai, China. Landsc. Urban Plan. 2015, 137, 20-29. https://doi.org/10.1016/j.landurbplan.2014.12.010
https://doi.org/10.1016/j.landurbplan.2014.12.010

[30] Zhang, H. The Orientation of Water Quality Variation from the Metropolis River - Huangpu River, Shanghai.

Environ. Monit. Assess. 2007, 127, 429-434. https://doi.org/10.1007/s10661-006-9292-8
https://doi.org/10.1007/s10661-006-9292-8

[31] Bi, C.; Wang, X.; Jia, J.; Chen, Z. Spatial Variation and Sources of Polycyclic Aromatic Hydrocarbons Influenced by Intensive Land Use in an Urbanized River Network of East China. Sci. Total Environ. 2018, 627, 671-680. https://doi.org/10.1016/j.scitotenv.2018.01.272
https://doi.org/10.1016/j.scitotenv.2018.01.272

[32] Zhang, Y.; Guo, F.; Meng, W.; Wang, X.-Q. Water Quality Assessment and Source Identification of Daliao River Basin Using Multivariate Statistical Methods. Environ. Monit. Assess. 2009, 152, 105-121. https://doi.org/10.1007/s10661-008-0300-z
https://doi.org/10.1007/s10661-008-0300-z

[33] Tan, L.; He, M.; Men, B.; Lin, C. Distribution and Sources of Organochlorine Pesticides in Water and Sediments from Daliao River Estuary of Liaodong Bay, Bohai Sea (China). Estuar. Coast. Shelf Sci. 2009, 84, 119-127. https://doi.org/10.1016/j.ecss.2009.06.013
https://doi.org/10.1016/j.ecss.2009.06.013

[34] Gao, X.; Song, J; Li, N.; Li, X. Spatial Distribution and Diurnal Variation of Chemical Oxygen Demand at the Beginning of the Rainy Season in the Changjiang (Yangtze) River Estuary. Chin. J. Oceanol. Limnol. 2007, 25, 254-260. https://doi.org/10.1007/s00343-007-0254-y
https://doi.org/10.1007/s00343-007-0254-y

[35] Liu, Y.X.; Xu, X.M.; Wang, T.; Ni, J.R. Microscopic View of Phytoplankton along the Yangtze River. Sci. China Technol. Sci. 2019, 62, 1873-1884. https://doi.org/10.1007/s11431-019-9545-y
https://doi.org/10.1007/s11431-019-9545-y

[36] Fan, H.; Chen, S.; Li, Z.; Liu, P.; Xu, C.; Yang, X. Assessment of Heavy Metals in Water, Sediment and Shellfish Organisms in Typical Areas of the Yangtze River Estuary, China. Mar. Pollut. Bull. 2020, 151, 110864. https://doi.org/10.1016/j.marpolbul.2019.110864
https://doi.org/10.1016/j.marpolbul.2019.110864

[37] Barbulescu, A.; Barbes, L. Assessing the Water Quality of the Danube River (at Chiciu, Romania) by Statistical Methods. Environ. Earth Sci. 2020, 79, 122. https://doi.org/10.1007/s12665-020-8872-1
https://doi.org/10.1007/s12665-020-8872-1

[38] Chen, L.; Zhu, G.; Shi, Q.; Jin, M.; Zhang, J. The Chemical Characteristics and Evaluation of Water Environment in Xiangshan Harbor of the East China Sea. Int. Conf. Biomed. Eng. Biotechnol. 2012, 1783-1786. https://doi.org/10.1109/iCBEB.2012.402
https://doi.org/10.1109/iCBEB.2012.402

[39] Zhao, B.; Wang, X.; Jin, H.; Feng, H.; Shen, G.; Cao, Y.; Yu, C.; Lu, Z.; Zhang, Q. Spatiotemporal Variation and Potential Risks of Seven Heavy Metals in Seawater, Sediment, and Seafood in Xiangshan Bay, China (2011-2016). Chemosphere 2018, 212, 1163-1171. https://doi.org/10.1016/j.chemosphere.2018.09.020
https://doi.org/10.1016/j.chemosphere.2018.09.020

[40] Gamito, S. Benthic Ecology of Semi-Natural Coastal Lagoons, in the Ria Formosa (Southern Portugal), Exposed to Different Water Renewal Regimes. Hydrobiologia 2006, 555, 75-87. https://doi.org/10.1007/s10750-005-1107-3
https://doi.org/10.1007/s10750-005-1107-3

[41] Chen, H.; Teng, Y.; Yue, W.; Song, L. Characterization and Source Apportionment of Water Pollution in Jinjiang River, China. Environ. Monit. Assess. 2013, 185, 9639-9650. https://doi.org/10.1007/s10661-013-3279-z
https://doi.org/10.1007/s10661-013-3279-z

[42] Yang D.; Qi, S.; Zhang, J.; Wu, C.; Xing, X. Organochlorine Pesticides in Soil, Water and Sediment along the Jinjiang River Mainstream to Quanzhou Bay, Southeast China. Ecotoxicol. Environ. Saf. 2013, 89, 59-65. https://doi.org/10.1016/j.ecoenv.2012.11.014
https://doi.org/10.1016/j.ecoenv.2012.11.014