Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Синтез наночастинок срібла та бінарної системи срібло-золото гальванічним заміщенням в ультразвуковому полі

Galyna Zozulya1, Оrest Kunty1, Mariana Shepida1, Vasyl Kordan2
Affiliation: 
1 Lviv Polytechnic National University, 12, S.Bandery St., Lviv, 79013, Ukraine 2 Ivan Franko National University of Lviv, 6, Kyryla i Mefodiya St., Lviv, 79005, Ukraine gzozula@ukr.net
DOI: 
https://doi.org/10.23939/chcht18.03.342
AttachmentSize
PDF icon full_text.pdf1.36 MB
Abstract: 
Досліджено умови синтезу колоїдних розчинів наночастинок срібла гальванічним заміщенням в ультразвуковому полі та бінарної системи AgAuNPs гальванічним заміщенням. Показано, що в розчинах натрію поліакрилату та прекурсорів металів AgNO3 і H[AuCl4] утворюються колоїдні розчини стабілізованих наночастинок з максимумами поглинання 410 нм (AgNPs) й 540…560 нм (AgAuNPs). Синтезовані AgAuNPs мають сферичну форму, їхні розміри не перевищують 20 нм.
References: 

[1] Habibullah, G.; Viktorova, J.; Ruml, T. Current Strategies for Noble Metal Nanoparticle Synthesis. Nanoscale Res. Lett. 2021, 16, 47. https://doi.org/10.1186/s11671-021-03480-8
[2] Rodrigues, T.S.; Da Silva, A.G.M.; Camargo, P.H.C. Nanocatalysis by Noble Metal Nanoparticles: Controlled Synthesis for the Optimization and Understanding of Activities. J. Mater. Chem. A 2019, 7, 5857–5874. https://doi.org/10.1039/c9ta00074g
[3] Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Abdullah, C.A.C.; Ahmad, S.A. Characterization and Biomedical Application of Silver Nanoparticles. Materials 2022, 15, 427. https://doi.org/10.3390/ma15020427
[4] Wahab, M.A.; Luming, L.; Matin, M.A.; Karim, M.R.; Aijaz, M.O.; Alharbi, H.F.; Abdala, A.; Haque, R. Silver Micro-Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedical Applications, and Mechanisms of Action. Polymers 2021, 13, 2870. https://doi.org/10.3390/polym13172870
[5] Parmar, S.; Kaur, H.; Singh, J.; Matharu, A.S.; Ramakrishna, S.; Bechelany, M. Recent Advances in Green Synthesis of Ag NPs for Extenuating Antimicrobial Resistance. Nanomaterials 2022, 12, 1115. https://doi.org/10.3390/nano12071115
[6] Kuntyi, О.І.; Kytsya, А.R.; Mertsalo, I.P.; Mazur, А.S.; Zozula, G.І.; Bazylyak, L.I.; Тоpchak, R.V. Electrochemical Synthesis of Silver Nanoparticles by Reversible Current in Solutions of Sodium Polyacrylate. Colloid Polym. Sci. 2019, 297, 689–695. https://doi.org/10.1007/s00396-019-04488-4
[7] Kuntyi, O.; Shepida, M.; Sozanskyi, M.; Mazur, A.; Kytsya, A.; Bazylyak, L. Sonoelectrochemical Synthesis of Silver Nanoparticles in Sodium Polyacrylate Solution. Biointerf. Res. Appl. Chem. 2020, 11, 12202–12214. http://doi.org/10.33263/briac114.1220212214
[8] Anik, M.I.; Mahmud, N.; Masud, A.A.; Hasan, M. Gold Nanoparticles (GNPs) in Biomedical and Clinical Applications: A Review. Nano Select. 2022, 3, 792–828. https://doi.org/10.1002/nano.202100255
[9] Ielo, I.; Rando, G.; Giacobello, F.; Sfameni, S.; Castellano, A.; Galletta, M.; Drommi, D.; Rosace, G.; Plutino, M.R. Synthesis, Chemical–Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021, 26, 5823. https://doi.org/10.3390/molecules26195823
[10] Timoszyk, A.; Grochowalska, R. Mechanism and Antibacterial Activity of Gold Nanoparticles (AuNPs) Functionalized with Natural Compounds from Plants. Pharmaceutics 2022, 14, 2599. https://doi.org/10.3390/pharmaceutics14122599
[11] Mazur, A.; Shepida, M.; Zozulya, G.; Kuntyi, O. Synthesis of Gold Nanoparticles by Sonogalvanic Replacement in Sodium Polyacrylate Solutions. 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP),10-15 September, Bratislava, 2023. https://doi.org/10.1109/NAP59739.2023.10310801
[12] Gherasim, O.; Puiu, R.A.; Bîrcă, A.C.; Burdușel, A.C.; Grumezescu, A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials 2020, 10, 2318. https://doi.org/10.3390/nano10112318
[13] Shabaninezhad, M.; Ramakrishna G. Theoretical Investigation of Plasmonic Properties of Quantum-Sized Silver Nanoparticles. Plasmonics, 2020, 15, 783–795. https://doi.org/10.1007/s11468-019-01102-9
[14] Znak, Z.; Kochubei V. Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on Its Sorption Capacity. Chem. Chem. Technol. 2023, 17, 646–654. https://doi.org/10.23939/chcht17.03.646
[15] Datta, D.; Deepak, K.S.; Das, B. Progress in the Synthesis, Characterisation, Property Enhancement Techniques and Application of Gold Nanoparticles: A Review. MRS Commun. 2022, 12, 700–715. https://doi.org/10.1557/s43579-022-00216-2
[16] Sengani, M.; Grumezescu, A.M.; Rajeswari, V.D. Recent Trends and Methodologies in Gold Nanoparticle Synthesis - A Prospective Review on Drug Delivery Aspect. Open Nano 2017, 2, 37–46. https://doi.org/10.1016/j.onano.2017.07.001
[17] Idris, D.S.; Roy, A. Synthesis of Bimetallic Nanoparticles and Applications-An Updated Review. Crystals 2023, 13, 637. https://doi.org/10.3390/cryst13040637
[18] Loza, K.; Heggen, M.; Epple, M. Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals. Adv. Function. Mater. 2020, 30, 1909260. https://doi.org/10.1002/adfm.201909260
[19] Fu, J.; Wang, S.; Zhu, J.; Wang, K.; Gao, M.; Wang, X.; Xu, Q. Au-Ag Bimetallic Nanoparticles Decorated Multi-Amino Cyclophosphazene Hybrid Microspheres as Enhanced Activity Catalysts for the Reduction of 4-Nitrophenol. Mater. Chem. Phys. 2018, 207, 315–324. https://doi.org/10.1016/j.matchemphys.2018.01.002
[20] Silva, A.G.M.; Rodrigues, T.S.; Haigh, S.J.; Camargo, P.H.C. Galvanic Replacement Reaction: Recent Developments for Engineering Metal Nanostructures Towards Catalytic Applications. Chem. Commun. 2017, 53, 7135−7148. https://doi.org/10.1039/C7CC02352A
[21] Cheng, H.; Wang, C.; Qin, D.; Xia, Y. Galvanic Replacement Synthesis of Metal Nanostructures: Bridging the Gap between Chemical and Electrochemical Approaches. Acc. Chem. Res. 2023, 56, 900−909. https://doi.org/10.1021/acs.accounts.3c00067
[22] Wu, C.; Mosher, B.P.; Zeng, T. Chemically-mechanically Assisted Synthesis of Metallic and Oxide Nanoparticles in Ambient Conditions. J. Nanosci. Nanotechnol. 2008, 8, 386–389. https://doi.org/10.1166/jnn.2008.18144
[23] Kuntyi, О.; Zozulya, G.; Kytsya, A. "Green" Synthesis of Metallic Nanoparticles by Sonoelectrochemical and Sonogalvanic Replacement Methods. Bioinorg Chem Appl. 2021, 2021, 9830644. https://doi.org/10.1155/2021/9830644
[24] Zozulya, G.; Kuntyi, O.; Mnykh, R.; Kytsya, A.; Bazylyak, L. Synthesis of Silver Nanoparticles by Sonogalvanic Replacement on Aluminium Powder in Sodium Polyacrylate Solutions. Ultrason Sonochem. 2022, 84, 105951. https://doi.org/10.1016/j.ultsonch.2022.105951
[25] Zozulya, G.; Kuntyi, O.; Mnykh, R.; Sozanskyi, M. Synthesis of Antibacterially Active Silver Nanoparticles by Galvanic Replacement on Magnesium in Solutions of Sodium Polyacrylate in an Ultrasound. Chem. Chem. Technol. 2021, 15, 493–499. https://doi.org/10.23939/chcht15.04.493
[26] Niu, K.-Y.; Kulinich, S.A.; Yang, J.; Zhu, A.L.; Du, X.-W. Galvanic Replacement Reactions of Active-Metal Nanoparticles. Chem. Eur. J. 2012, 18, 4234–4241. https://doi.org/10.1002/chem.201102544
[27] Asselin, J.; Boukouvala, C.; Wu, Y.; Hopper, E.R.; Collins, S.M.; Biggins, J.S.; Ringe, E. Decoration of Plasmonic Mg Nanoparticles by Partial Galvanic Replacement. J. Chem. Phys. 2019, 151, 244708. https://doi.org/10.1063/1.5131703
[28] Kuntyi, О.І.; Zozulya, G.I.; Shepida, M.V. Nanoscale Galvanic Replacement in Non-Aqueous Media: A Mini-Review. Vopr. Khimii i Khimicheskoi Tekhnologii 2020, 4, 5–15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15
[29] Bastús, N.G.; Merkoçi, F.; Piella, J.; Puntes V. Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties. Chem. Mater. 2014, 26, 2836–2846. https://doi.org/10.1021/cm500316k
[30] Znak, Z.O.; Sukhatskiy, Yu.V.; Mnykh, R.V.; Tkach, Z.S. Thermochemical Analysis of Energetics in the Process of Water Sonolysis in Cavitation Fields. Vopr. Khimii i Khimicheskoi Tekhnologii 2018, 3, 64−69.
[31] Pollet, B.G. The Use of Ultrasound for the Fabrication of Fuel Cell Materials. Int. J. Hydrogen Energy 2010, 35, 11986–12004. https://doi.org/10.1016/j.ijhydene.2010.08.021