Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Synthesis of Silver Nanoparticles and Silver-Gold Binary System by Galvanic Replacement in an Ultrasonic Field

Galyna Zozulya1, Оrest Kunty1, Mariana Shepida1, Vasyl Kordan2
Affiliation: 
1 Lviv Polytechnic National University, 12, S.Bandery St., Lviv, 79013, Ukraine 2 Ivan Franko National University of Lviv, 6, Kyryla i Mefodiya St., Lviv, 79005, Ukraine gzozula@ukr.net
DOI: 
https://doi.org/10.23939/chcht18.03.342
AttachmentSize
PDF icon full_text.pdf1.36 MB
Abstract: 
The conditions for the synthesis of colloidal solutions of silver nanoparticles by galvanic replacement in an ultrasonic field and the AgAuNP binary system by galvanic replacement have been studied. It has been shown that colloidal solutions of stabilized nanoparticles with absorption maxima at 410 nm (AgNPs) and 540...560 nm (AgAuNPs) are formed in solutions of sodium polyacrylate and metal precursors of AgNO3 and H[AuCl4]. The synthesized AgAuNPs are spherical in shape and their size does not exceed 20 nm.
References: 

[1] Habibullah, G.; Viktorova, J.; Ruml, T. Current Strategies for Noble Metal Nanoparticle Synthesis. Nanoscale Res. Lett. 2021, 16, 47. https://doi.org/10.1186/s11671-021-03480-8
https://doi.org/10.1186/s11671-021-03480-8

[2] Rodrigues, T.S.; Da Silva, A.G.M.; Camargo, P.H.C. Nanocatalysis by Noble Metal Nanoparticles: Controlled Synthesis for the Optimization and Understanding of Activities. J. Mater. Chem. A 2019, 7, 5857-5874. https://doi.org/10.1039/c9ta00074g
https://doi.org/10.1039/C9TA00074G

[3] Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Abdullah, C.A.C.; Ahmad, S.A. Characterization and Biomedical Application of Silver Nanoparticles. Materials 2022, 15, 427. https://doi.org/10.3390/ma15020427
https://doi.org/10.3390/ma15020427

[4] Wahab, M.A.; Luming, L.; Matin, M.A.; Karim, M.R.; Aijaz, M.O.; Alharbi, H.F.; Abdala, A.; Haque, R. Silver Micro-Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedical Applications, and Mechanisms of Action. Polymers 2021, 13, 2870. https://doi.org/10.3390/polym13172870
https://doi.org/10.3390/polym13172870

[5] Parmar, S.; Kaur, H.; Singh, J.; Matharu, A.S.; Ramakrishna, S.; Bechelany, M. Recent Advances in Green Synthesis of Ag NPs for Extenuating Antimicrobial Resistance. Nanomaterials 2022, 12, 1115. https://doi.org/10.3390/nano12071115
https://doi.org/10.3390/nano12071115

[6] Kuntyi, О.І.; Kytsya, А.R.; Mertsalo, I.P.; Mazur, А.S.; Zozula, G.І.; Bazylyak, L.I.; Тоpchak, R.V. Electrochemical Synthesis of Silver Nanoparticles by Reversible Current in Solutions of Sodium Polyacrylate. Colloid Polym. Sci. 2019, 297, 689-695. https://doi.org/10.1007/s00396-019-04488-4
https://doi.org/10.1007/s00396-019-04488-4

[7] Kuntyi, O.; Shepida, M.; Sozanskyi, M.; Mazur, A.; Kytsya, A.; Bazylyak, L. Sonoelectrochemical Synthesis of Silver Nanoparticles in Sodium Polyacrylate Solution. Biointerf. Res. Appl. Chem. 2020, 11, 12202-12214. http://doi.org/10.33263/briac114.1220212214
https://doi.org/10.33263/BRIAC114.1220212214

[8] Anik, M.I.; Mahmud, N.; Masud, A.A.; Hasan, M. Gold Nanoparticles (GNPs) in Biomedical and Clinical Applications: A Review. Nano Select. 2022, 3, 792-828. https://doi.org/10.1002/nano.202100255
https://doi.org/10.1002/nano.202100255

[9] Ielo, I.; Rando, G.; Giacobello, F.; Sfameni, S.; Castellano, A.; Galletta, M.; Drommi, D.; Rosace, G.; Plutino, M.R. Synthesis, Chemical-Physical Characterization, and Biomedical Applications of Functional Gold Nanoparticles: A Review. Molecules 2021, 26, 5823. https://doi.org/10.3390/molecules26195823
https://doi.org/10.3390/molecules26195823

[10] Timoszyk, A.; Grochowalska, R. Mechanism and Antibacterial Activity of Gold Nanoparticles (AuNPs) Functionalized with Natural Compounds from Plants. Pharmaceutics 2022, 14, 2599. https://doi.org/10.3390/pharmaceutics14122599
https://doi.org/10.3390/pharmaceutics14122599

[11] Mazur, A.; Shepida, M.; Zozulya, G.; Kuntyi, O. Synthesis of Gold Nanoparticles by Sonogalvanic Replacement in Sodium Polyacrylate Solutions. 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP),10-15 September, Bratislava, 2023. https://doi.org/10.1109/NAP59739.2023.10310801
https://doi.org/10.1109/NAP59739.2023.10310801

[12] Gherasim, O.; Puiu, R.A.; Bîrcă, A.C.; Burdușel, A.C.; Grumezescu, A.M. An Updated Review on Silver Nanoparticles in Biomedicine. Nanomaterials 2020, 10, 2318. https://doi.org/10.3390/nano10112318
https://doi.org/10.3390/nano10112318

[13] Shabaninezhad, M.; Ramakrishna G. Theoretical Investigation of Plasmonic Properties of Quantum-Sized Silver Nanoparticles. Plasmonics, 2020, 15, 783-795. https://doi.org/10.1007/s11468-019-01102-9
https://doi.org/10.1007/s11468-019-01102-9

[14] Znak, Z.; Kochubei V. Influence of Natural Clinoptilolite Modification with Ions and Zero-Valent Silver on Its Sorption Capacity. Chem. Chem. Technol. 2023, 17, 646-654. https://doi.org/10.23939/chcht17.03.646
https://doi.org/10.23939/chcht17.03.646

[15] Datta, D.; Deepak, K.S.; Das, B. Progress in the Synthesis, Characterisation, Property Enhancement Techniques and Application of Gold Nanoparticles: A Review. MRS Commun. 2022, 12, 700-715. https://doi.org/10.1557/s43579-022-00216-2
https://doi.org/10.1557/s43579-022-00216-2

[16] Sengani, M.; Grumezescu, A.M.; Rajeswari, V.D. Recent Trends and Methodologies in Gold Nanoparticle Synthesis - A Prospective Review on Drug Delivery Aspect. Open Nano 2017, 2, 37-46. https://doi.org/10.1016/j.onano.2017.07.001
https://doi.org/10.1016/j.onano.2017.07.001

[17] Idris, D.S.; Roy, A. Synthesis of Bimetallic Nanoparticles and Applications-An Updated Review. Crystals 2023, 13, 637. https://doi.org/10.3390/cryst13040637
https://doi.org/10.3390/cryst13040637

[18] Loza, K.; Heggen, M.; Epple, M. Synthesis, Structure, Properties, and Applications of Bimetallic Nanoparticles of Noble Metals. Adv. Function. Mater. 2020, 30, 1909260. https://doi.org/10.1002/adfm.201909260
https://doi.org/10.1002/adfm.201909260

[19] Fu, J.; Wang, S.; Zhu, J.; Wang, K.; Gao, M.; Wang, X.; Xu, Q. Au-Ag Bimetallic Nanoparticles Decorated Multi-Amino Cyclophosphazene Hybrid Microspheres as Enhanced Activity Catalysts for the Reduction of 4-Nitrophenol. Mater. Chem. Phys. 2018, 207, 315-324. https://doi.org/10.1016/j.matchemphys.2018.01.002
https://doi.org/10.1016/j.matchemphys.2018.01.002

[20] Silva, A.G.M.; Rodrigues, T.S.; Haigh, S.J.; Camargo, P.H.C. Galvanic Replacement Reaction: Recent Developments for Engineering Metal Nanostructures Towards Catalytic Applications. Chem. Commun. 2017, 53, 7135−7148. https://doi.org/10.1039/C7CC02352A
https://doi.org/10.1039/C7CC02352A

[21] Cheng, H.; Wang, C.; Qin, D.; Xia, Y. Galvanic Replacement Synthesis of Metal Nanostructures: Bridging the Gap between Chemical and Electrochemical Approaches. Acc. Chem. Res. 2023, 56, 900−909. https://doi.org/10.1021/acs.accounts.3c00067
https://doi.org/10.1021/acs.accounts.3c00067

[22] Wu, C.; Mosher, B.P.; Zeng, T. Chemically-mechanically Assisted Synthesis of Metallic and Oxide Nanoparticles in Ambient Conditions. J. Nanosci. Nanotechnol. 2008, 8, 386-389. https://doi.org/10.1166/jnn.2008.18144
https://doi.org/10.1166/jnn.2008.18144

[23] Kuntyi, О.; Zozulya, G.; Kytsya, A. "Green" Synthesis of Metallic Nanoparticles by Sonoelectrochemical and Sonogalvanic Replacement Methods. Bioinorg Chem Appl. 2021, 2021, 9830644. https://doi.org/10.1155/2021/9830644
https://doi.org/10.1155/2021/9830644

[24] Zozulya, G.; Kuntyi, O.; Mnykh, R.; Kytsya, A.; Bazylyak, L. Synthesis of Silver Nanoparticles by Sonogalvanic Replacement on Aluminium Powder in Sodium Polyacrylate Solutions. Ultrason Sonochem. 2022, 84, 105951. https://doi.org/10.1016/j.ultsonch.2022.105951
https://doi.org/10.1016/j.ultsonch.2022.105951

[25] Zozulya, G.; Kuntyi, O.; Mnykh, R.; Sozanskyi, M. Synthesis of Antibacterially Active Silver Nanoparticles by Galvanic Replacement on Magnesium in Solutions of Sodium Polyacrylate in an Ultrasound. Chem. Chem. Technol. 2021, 15, 493-499. https://doi.org/10.23939/chcht15.04.493
https://doi.org/10.23939/chcht15.04.493

[26] Niu, K.-Y.; Kulinich, S.A.; Yang, J.; Zhu, A.L.; Du, X.-W. Galvanic Replacement Reactions of Active-Metal Nanoparticles. Chem. Eur. J. 2012, 18, 4234-4241. https://doi.org/10.1002/chem.201102544
https://doi.org/10.1002/chem.201102544

[27] Asselin, J.; Boukouvala, C.; Wu, Y.; Hopper, E.R.; Collins, S.M.; Biggins, J.S.; Ringe, E. Decoration of Plasmonic Mg Nanoparticles by Partial Galvanic Replacement. J. Chem. Phys. 2019, 151, 244708. https://doi.org/10.1063/1.5131703
https://doi.org/10.1063/1.5131703

[28] Kuntyi, О.І.; Zozulya, G.I.; Shepida, M.V. Nanoscale Galvanic Replacement in Non-Aqueous Media: A Mini-Review. Vopr. Khimii i Khimicheskoi Tekhnologii 2020, 4, 5-15. https://doi.org/10.32434/0321-4095-2020-131-4-5-15
https://doi.org/10.32434/0321-4095-2020-131-4-5-15

[29] Bastús, N.G.; Merkoçi, F.; Piella, J.; Puntes V. Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties. Chem. Mater. 2014, 26, 2836-2846. https://doi.org/10.1021/cm500316k
https://doi.org/10.1021/cm500316k

[30] Znak, Z.O.; Sukhatskiy, Yu.V.; Mnykh, R.V.; Tkach, Z.S. Thermochemical Analysis of Energetics in the Process of Water Sonolysis in Cavitation Fields. Vopr. Khimii i Khimicheskoi Tekhnologii 2018, 3, 64−69.

[31] Pollet, B.G. The Use of Ultrasound for the Fabrication of Fuel Cell Materials. Int. J. Hydrogen Energy 2010, 35, 11986-12004. https://doi.org/10.1016/j.ijhydene.2010.08.021
https://doi.org/10.1016/j.ijhydene.2010.08.021