Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Одержання бітуму, модифікованого низькомолекулярними органічними сполуками із нафтових залишків. 8. Перспективи використання гудронів, модифікованих формальдегідом, у дорожньому будівництві

Volodymyr Gunka1, Myroslava Donchenko1, Yuriy Demchuk1,2, Iryna Drapak2, Michael Bratychak1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., Lviv 79013, Ukraine 2 Danylo Halytsky Lviv National Medical University, 69 Pekarska St., Lviv 79010, Ukraine yuriy_demchuk@ukr.net
DOI: 
https://doi.org/10.23939/chcht17.03.701
AttachmentSize
PDF icon full_text.pdf999.26 KB
Abstract: 
Проведено модифікування гудронів фор¬маліном (37 %-м водним розчином формальдегіду) із вико¬ристанням різних кислот, як каталізаторів процесу, із метою одержання нових в’яжучих матеріалів для дорожнього будівництва. Як каталізатор використовували Н2SO4, НCl, Н3PO4 та СH3COOH. Процес модифікування проводили в діапазоні температур 378-403 К та тривалості 0,6-1,0 год. Досліджено реологічні властивості гудронів, модифікованих формальдегідом, за 333, 343 та 353 К, та проведено порів-няння реологічних властивостей отриманих бітумних в’яжу-чих матеріалів з окисненими бітумами.
References: 

[1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742-777. https://doi.org/10.3390/app9040742
[2] Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook; Ice Publishing: London, 2015; pp 1-463. ISBN: 0 7277 3220 X
[3] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
[4] Baldino, N.; Gabriele, D.; Lupi, F.R.; Rossi, C.O.; Caputo, P.; Falvo, T. Rheological Effects On Bitumen Of Polyphosphoric Acid (PPA) Addition. Constr. Build. Mater. 2013, 40, 397-404. https://doi.org/10.1016/j.conbuildmat.2012.11.001
[5] Özdemir, D.K. High and Low Temperature Rheological Characteristics of Linear Alkyl Benzene Sulfonic Acid Modified Bitumen. Constr. Build. Mater. 2021, 301, 1-8. https://doi.org/10.1016/j.conbuildmat.2021.124041
[6] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Chen, H. Effect Of Silane Coupling Agent On Improving The Adhesive Properties Between Asphalt Binder And Aggregates. Constr. Build. Mater. 2018, 169, 591-600. https://doi.org/10.1016/j.conbuildmat.2018.02.186
[7] Cuadri, A.A.; Partal, P.; Navarro, F.J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel 2011, 90, 2294-2300. https://doi.org/10.1016/j.fuel.2011.02.035
[8] Bagshaw, S.A.; Kemmitt, T.; Waterland, M.; Brooke, S. Effect of Blending Conditions on Nano-Clay Bitumen Nanocomposite Properties. Road Mater. Pavement Des. 2019, 20, 1735-1756. https://doi.org/10.1080/14680629.2018.1468802
[9] Dehouche, N.; Kaci, M.; Mouillet, V. The Effects of Mixing Rate on Morphology and Physical Properties of Bitumen/Organo-Modified Montmorillonite Nanocomposites. Constr. Build. Mater. 2016, 114, 76-86. https://doi.org/10.1016/j.conbuildmat.2016.03.151
[10] Mamuye, Y.; Liao, M.C.; Do, N.D. Nano-Al2O3 Composite on Intermediate and High Temperature Properties of Neat and Modified Asphalt Binders and Their Effect on Hot Mix Asphalt Mixtures. Constr. Build. Mater. 2022, 331, 1-13. https://doi.org/10.1016/j.conbuildmat.2022.127304
[11] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Dem-chuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443
[12] Geckil, T.; Seloglu, M. Performance Properties of Asphalt Modified with Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
[13] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Mod-ified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142
[14] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
[15] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Starovoit, A.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199-1206.
[16] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95-102 https://doi.org/10.1007/978-3-030-57340-9_1
[17] Shi, X.; Zhang, H.; Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pave-ment. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154
[18] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14
[19] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429.
[20] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
[21] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
[22] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
[23] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
[24] Gunka, V.; Hrynchuk, Y.; Demchuk, Y.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy V.; Astakhova O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211-220. https://doi.org/10.23939/chcht17.01.211 [25] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
[26] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
[27] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
[28] DSTU 4044:2019 (National Standard of Ukraine), Viscous Petroleum Road Bitumens. Specification, 2019.
[29] DSTU 9116:2021 (National Standard of Ukraine), Bitumen and bituminous binders. Polymer Modified Road Bitumen. Specification, 2022.
[30] SОU 42.1-37641918-068:2017 (Organization Standard of Ukraine), Viscous Road Bitumen, Modified Additives Based On Waxes. Specifications, 2017.
[31] SOU 45.2-00018112-067:2011 (Organization Standard of Ukraine), Construction materials. Pavement grade viscous bitu-men’s, modified by adhesion promoters. Specifications, 2011.
[32] DSTU EN 13302:2019 (National Standard of Ukraine), Bitu-men and bituminous binders. Determination of Dynamic Viscosity of Bituminous Binder Using a Rotating Spindle Apparatus, 2020.
[33] DSTU EN 12591:2017 (National Standard of Ukraine), Bitu-men and bituminous binders. Specifications for Paving Grade Bitumens, 2017.