Високов’язка нафта: огляд
Attachment | Size |
---|---|
full_text.pdf | 330.85 KB |
[1] Souas, F.; Safri, A.; Benmounah, A. A Review
on the Rheology of Heavy Crude Oil for Pipeline Transportation. Petroleum Research 2021, 6, 116-136. https://doi.org/10.1016/j.ptlrs.2020.11.001
[2] Rana, M.S.; Sámano, V.; Ancheyta, J.; Diaz, J.A.I. A Review of Recent Advances on Process Technologies for Upgrading of Heavy Oils and Residua. Fuel 2007, 86, 1216-1231. https://doi.org/10.1016/j.fuel.2006.08.004
[3] Topilnytskyy, P.I.; Romanchuk, V.V.; Yarmola, T.V.; Zin-chenko, D.V. Fizyko-khimichni vlastyvosti vazhkykh naft Yablu-nivsʹkoho rodovyshcha z vysokym vmistom sirky. Visnyk NU “Lʹvivsʹka politekhnika”: Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya 2020, 3, 75-82. https://doi.org/10.23939/ctas2020.01.075
[4] Prasad, S.K.; Kakati, A.; Sangwai, J.S. Rheology of Heavy Crude Oil and Asphaltene-Polymer Composite Blends. In Rheology of Polymer Blends and Nanocomposites; Thomas, S.; Sarathchan-dran, C.; Chandran, N., Eds.; Elsevier Inc., 2020; pp 161–192. https://doi.org/10.1016/B978-0-12-816957-5.00008-2
[5] Merola, M.C.; Carotenuto, C.; Gargiulo, V.; Stanzione, F.; Ciajolo, A.; Minale, M. Chemical–Physical Analysis
of Rheologically Different Samples of a Heavy Crude Oil. Fuel Process. Technol. 2016, 148, 236–247. https://doi.org/10.1016/j.fuproc.2016.03.001
[6] Meyer, R.F, Attanasi, E.D. Heavy Oil and Natural Bitumen – Strategic Petroleum Resources. USGS Fact Sheet 2003, 3. https://doi.org/10.3133/fs0700
[7] Santos, R.G.; Loh, W.; Bannwart, A.C.; Trevisan, O.V. An Overview of Heavy Oil Properties and its Recovery and
Transportation Methods. Braz. J. Chem. Eng. 2014, 31, 571-590. https://doi.org/10.1590/0104-6632.20140313s00001853
[8] Ashrafizadeh, S.N.; Motaee, E.; Hoshyargar,
V. Emulsification of Heavy Crude Oil in Water by Natural
Surfactants. J. Pet. Sci. Eng. 2012, 86-87, 137-143. https://doi.org/10.1016/j.petrol.2012.03.026
[9] Taborda, E.A.; Franco, C.A.; Lopera, S.H.; Alvarado, V.; Cortés, F.B. Effect of Nanoparticles/Nanofluids on the Rheology of Heavy Crude Oil and its Mobility on Porous Media at Reservoir Conditions. Fuel 2016, 184, 222-232. https://doi.org/10.1016/j.fuel.2016.07.013
[10] Emadi, A.; Sohrabi, M.; Jamiolahmady, M.; Ireland, S.; Robertson, G. Reducing Heavy Oil Carbon Footprint and Enhancing Production through CO2 Injection. Chem. Eng. Res. Des. 2011, 89, 1783-1793. https://doi.org/10.1016/j.cherd.2010.08.008
[11] Hasan, S.W.; Ghannam, M.T.; Esmail, N. Heavy Crude Oil Viscosity Reduction and Rheology for Pipeline Transportation. Fuel 2010, 89, 1095-1100. https://doi.org/10.1016/j.fuel.2009.12.021
[12] Top heavy crude producers globally. REUTERS GRAPHICS. https://fingfx.thomsonreuters.com/gfx/editorcharts/VENEZUELA-POLITICS-US... (accessed 2022-11-01)
[13] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461
[14] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T.; Stebelska H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14, 412-419. https://doi.org/10.23939/chcht14.03.412
[15] Topilnytskyy, P.; Paiuk, S.; Stebelska, H.; Romanchuk, V.; Yarmola, T. Technological Features of High-Sulfur Heavy Crude Oils Processing. Chem. Chem. Technol. 2019, 13, 503-509. https://doi.org/10.23939/chcht13.04.503
[16] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15, 423-431. https://doi.org/10.23939/chcht15.03.423
[17] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T. Production of Corrosion Inhibitors for Oil Refining Equipment Using Natural Components. Chem. Chem. Technol. 2018, 12 , 400-404. https://doi.org/10.23939/chcht12.03.400
[18] Pyshyev, S; Gunka V.; Grytsenko Y.; Bratychak, M. Polymer Modified Bitumen: Review. Chem. Chem. Technol. 2016, 10, 631-636. https://doi.org/10.23939/chcht10.04si.631
[19] Gunka, V.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Prysiazh-nyi, Y.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Tem-perature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475-483. https://doi.org/10.23939/chcht16.03.475
[20] Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295-302. https://doi.org/10.23939/chcht16.02.295
[21] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429.
[22] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
[23] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
[24] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Dem-chuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443
[25] ENI 9M 2022 RESULTS. https://www.eni.com/assets/documents/eng/investor/presentations/2022/202...
[26] Vytvytsʹkyy, YA.S.; Pilka, M.S. Analiz resursnoho
potentsialu ta ekonomichnykh problem naftodobuvannya v Ukrayini iz rodovyshch vuhlevodniv, zapasy yakykh vidnosyat’sya do katehoriyi vazhkovydobuvnykh. Naukovyy visnyk IFNTUNH: Ekonomika ta upravlinnya v naftoviy i hazoviy promyslovosti 2016, 1, 30-35.
[27] Wim Teugels Wilfredo Salas An overview of the handling of extra heavy crude oil. 2018, 435. https://www.researchgate.net/publication/344275049_An_overview_of_the_ha...
[28] Stebelska, H. Novyy pohlyad na problemu klasyfikatsiyi naft. Visnyk Kharkivsʹkoho natsionalʹnoho universytetu im. V.N. Karazina: Heolohiya. Heohrafiya. Ekolohiya 2017, 46, 50-56.
[29] Processing of Heavy Crude Oils – Challenges and
Opportunities. Ramasamy Marappa Gounder, Ed.; London, 2019. http://dx.doi.org/10.5772/intechopen.74912
[30] Alaei, M.; Bazmi, M.; Rashidi, A.; Rahimi, A. Heavy Crude Oil Upgrading Using Homogenous Nanocatalyst. J. Pet. Sci. Eng. 2017, 158, 47-55. http://dx.doi.org/10.1016/j.petrol.2017.08.031
[31] Mozafari, M.; Nasri, Z. Operational Conditions Effects on Iranian Heavy Oil Upgrading Using Microwave Irradiation. J. Pet. Sci. Eng. 2017, 151, 40-48. https://doi.org/10.1016/j.petrol.2017.01.028
[32] Mansouri, H.; Mohammadidoust, A.; Mohammadi, F. An Optimization Study on Quality Promotion of Heavy Crude Oil Exposed Ultrasonic Waves and Magnetic Nanoparticles Addition. Chem. Eng. Process.: Process Intensif. 2021, 167, 108542. https://doi.org/10.1016/j.cep.2021.108542
[33] Ilyin, S.O.; Ignatenko, V.Y.; Kostyuk, A.V.; Levin, I.S.; Bondarenko, G.N. Deasphalting of Heavy Crude Oil by Hexame-thyldisiloxane: The Effect of a Solvent/Oil Ratio on the Structure, Composition, and Properties of Precipitated Asphaltenes. J. Pet. Sci. Eng. 2022, 208, 109329. https://doi.org/10.1016/j.petrol.2021.109329
[34] Afzalinia, A.; Mirzaie, A.; Nikseresht, A.; Musabeygi, T. Ultrasound-Assisted Oxidative Desulfurization Process of Liquid Fuel by Phosphotungstic Acid Encapsulated in a Interpenetrating Amine-Functionalized Zn(II)-based MOF as Catalyst. Ultrason. Sonochem. 2017, 34, 713-720. https://doi.org/10.1016/j.ultsonch.2016.07.006
[35] Ghahremani, H.; Nasri, Z.; Eikani, M.H. Ultrasound-Assisted Oxidative Desulfurization (UAOD) of Iranian Heavy Crude Oil: Investigation of Process Variables. J. Pet. Sci. Eng. 2021, 204, 108709. https://doi.org/10.1016/j.petrol.2021.108709
[36] Al-Bidry, M.A.; Azeez, R.A. Removal Sulfur Components from Heavy Crude Oil by Natural Clay. Ain Shams Eng. J. 2020, 11, 1265-1273. https://doi.org/10.1016/j.asej.2020.03.010
[37] Lam-Maldonado, M.; Melo-Banda, J.A.; Macias-Ferrer, D.; Schacht, P.; Mata-Padilla, J.M.; de la Torre, A.I.R.; Meraz-Melo, M.A.; Domínguez J.M. NiFe Nanocatalysts for the Hydrocracking Heavy Crude Oil. Catal. Today 2020, 349, 17-25. https://doi.org/10.1016/j.cattod.2018.08.005
[38] Rana, M.S.; Ancheyta, J.; Maity, S.K.; Rayo, P. Heavy Crude Oil Hydroprocessing: A Zeolite-Based CoMo Catalyst and its Spent Catalyst Characterization. Catal. Today 2008, 130, 411-420. https://doi.org/10.1016/j.cattod.2007.10.106