Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

High-Viscosity Crude Oil. A Review

Tetiana Yarmola1, Petro Topilnytskyy1, Victoria Romanchuk1
Affiliation: 
1 Lviv Polytechnic National University, 12, S. Bandery St., 79013 Lviv, Ukraine. yarmolatetana@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.01.195
AttachmentSize
PDF icon full_text.pdf330.85 KB
Abstract: 
The current problem of the production and processing of heavy high-viscosity oils in Ukraine and the world has been considered. It has been established that the main reserves of heavy high-viscosity crude oils in the world are located in South and North America, in the Middle East, as well as in Ukraine in the eastern regions. An analysis of various classifications of heavy high-viscosity oils, which are used both in Ukraine and in the world, was carried out. The main extraction methods of heavy high-viscosity oils were considered, in particular, quarry, mine, and well extraction methods. An overview of the technological processes of heavy high-viscosity oil processing was carried out.
References: 

[1] Souas, F.; Safri, A.; Benmounah, A. A Review

on the Rheology of Heavy Crude Oil for Pipeline Transportation. Petroleum Research 2021, 6, 116-136. https://doi.org/10.1016/j.ptlrs.2020.11.001
https://doi.org/10.1016/j.ptlrs.2020.11.001

[2] Rana, M.S.; Sámano, V.; Ancheyta, J.; Diaz, J.A.I. A Review of Recent Advances on Process Technologies for Upgrading of Heavy Oils and Residua. Fuel 2007, 86, 1216-1231. https://doi.org/10.1016/j.fuel.2006.08.004
https://doi.org/10.1016/j.fuel.2006.08.004

[3] Topilnytskyy, P.I.; Romanchuk, V.V.; Yarmola, T.V.; Zin-chenko, D.V. Fizyko-khimichni vlastyvosti vazhkykh naft Yablu-nivsʹkoho rodovyshcha z vysokym vmistom sirky. Visnyk NU "Lʹvivsʹka politekhnika": Khimiya, tekhnolohiya rechovyn ta yikh zastosuvannya 2020, 3, 75-82. https://doi.org/10.23939/ctas2020.01.075
https://doi.org/10.23939/ctas2020.01.075

[4] Prasad, S.K.; Kakati, A.; Sangwai, J.S. Rheology of Heavy Crude Oil and Asphaltene-Polymer Composite Blends. In Rheology of Polymer Blends and Nanocomposites; Thomas, S.; Sarathchan-dran, C.; Chandran, N., Eds.; Elsevier Inc., 2020; pp 161-192. https://doi.org/10.1016/B978-0-12-816957-5.00008-2
https://doi.org/10.1016/B978-0-12-816957-5.00008-2

[5] Merola, M.C.; Carotenuto, C.; Gargiulo, V.; Stanzione, F.; Ciajolo, A.; Minale, M. Chemical-Physical Analysis

of Rheologically Different Samples of a Heavy Crude Oil. Fuel Process. Technol. 2016, 148, 236-247. https://doi.org/10.1016/j.fuproc.2016.03.001
https://doi.org/10.1016/j.fuproc.2016.03.001

[6] Meyer, R.F, Attanasi, E.D. Heavy Oil and Natural Bitumen - Strategic Petroleum Resources. USGS Fact Sheet 2003, 3. https://doi.org/10.3133/fs0700
https://doi.org/10.3133/fs07003

[7] Santos, R.G.; Loh, W.; Bannwart, A.C.; Trevisan, O.V. An Overview of Heavy Oil Properties and its Recovery and

Transportation Methods. Braz. J. Chem. Eng. 2014, 31, 571-590. https://doi.org/10.1590/0104-6632.20140313s00001853
https://doi.org/10.1590/0104-6632.20140313s00001853

[8] Ashrafizadeh, S.N.; Motaee, E.; Hoshyargar,

V. Emulsification of Heavy Crude Oil in Water by Natural

Surfactants. J. Pet. Sci. Eng. 2012, 86-87, 137-143. https://doi.org/10.1016/j.petrol.2012.03.026
https://doi.org/10.1016/j.petrol.2012.03.026

[9] Taborda, E.A.; Franco, C.A.; Lopera, S.H.; Alvarado, V.; Cortés, F.B. Effect of Nanoparticles/Nanofluids on the Rheology of Heavy Crude Oil and its Mobility on Porous Media at Reservoir Conditions. Fuel 2016, 184, 222-232. https://doi.org/10.1016/j.fuel.2016.07.013
https://doi.org/10.1016/j.fuel.2016.07.013

[10] Emadi, A.; Sohrabi, M.; Jamiolahmady, M.; Ireland, S.; Robertson, G. Reducing Heavy Oil Carbon Footprint and Enhancing Production through CO2 Injection. Chem. Eng. Res. Des. 2011, 89, 1783-1793. https://doi.org/10.1016/j.cherd.2010.08.008
https://doi.org/10.1016/j.cherd.2010.08.008

[11] Hasan, S.W.; Ghannam, M.T.; Esmail, N. Heavy Crude Oil Viscosity Reduction and Rheology for Pipeline Transportation. Fuel 2010, 89, 1095-1100. https://doi.org/10.1016/j.fuel.2009.12.021
https://doi.org/10.1016/j.fuel.2009.12.021

[12] Top heavy crude producers globally. REUTERS GRAPHICS. https://fingfx.thomsonreuters.com/gfx/editorcharts/VENEZUELA-POLITICS-US... (accessed 2022-11-01)

[13] Yarmola, T.; Topilnytskyy, P.; Gunka, V.; Tertyshna, O.; Romanchuk, V. Production of Distilled Bitumen from High-Viscosity Crude Oils of Ukrainian Fields. Chem. Chem. Technol. 2022, 16, 461-468. https://doi.org/10.23939/chcht16.03.461
https://doi.org/10.23939/chcht16.03.461

[14] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T.; Stebelska H. Study on Rheological Properties of Extra-Heavy Crude Oil from Fields of Ukraine. Chem. Chem. Technol. 2020, 14, 412-419. https://doi.org/10.23939/chcht14.03.412
https://doi.org/10.23939/chcht14.03.412

[15] Topilnytskyy, P.; Paiuk, S.; Stebelska, H.; Romanchuk, V.; Yarmola, T. Technological Features of High-Sulfur Heavy Crude Oils Processing. Chem. Chem. Technol. 2019, 13, 503-509. https://doi.org/10.23939/chcht13.04.503
https://doi.org/10.23939/chcht13.04.503

[16] Topilnytskyy, P.; Yarmola, T.; Romanchuk, V.; Kucinska-Lipka, J. Peculiarities of Dewatering Technology for Heavy High-Viscosity Crude Oils of Eastern Region of Ukraine. Chem. Chem. Technol. 2021, 15, 423-431. https://doi.org/10.23939/chcht15.03.423
https://doi.org/10.23939/chcht15.03.423

[17] Topilnytskyy, P.; Romanchuk, V.; Yarmola, T. Production of Corrosion Inhibitors for Oil Refining Equipment Using Natural Components. Chem. Chem. Technol. 2018, 12 , 400-404. https://doi.org/10.23939/chcht12.03.400
https://doi.org/10.23939/chcht12.03.400

[18] Pyshyev, S; Gunka V.; Grytsenko Y.; Bratychak, M. Polymer Modified Bitumen: Review. Chem. Chem. Technol. 2016, 10, 631-636. https://doi.org/10.23939/chcht10.04si.631
https://doi.org/10.23939/chcht10.04si.631

[19] Gunka, V.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Prysiazh-nyi, Y.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Tem-perature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475-483. https://doi.org/10.23939/chcht16.03.475
https://doi.org/10.23939/chcht16.03.475

[20] Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295-302. https://doi.org/10.23939/chcht16.02.295
https://doi.org/10.23939/chcht16.02.295

[21] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429.

[22] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
https://doi.org/10.23939/chcht14.02.251

[23] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
https://doi.org/10.23939/chcht15.02.274

[24] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Dem-chuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443
https://doi.org/10.23939/chcht15.03.443

[25] ENI 9M 2022 RESULTS. https://www.eni.com/assets/documents/eng/investor/presentations/2022/202...

[26] Vytvytsʹkyy, YA.S.; Pilka, M.S. Analiz resursnoho

potentsialu ta ekonomichnykh problem naftodobuvannya v Ukrayini iz rodovyshch vuhlevodniv, zapasy yakykh vidnosyat'sya do katehoriyi vazhkovydobuvnykh. Naukovyy visnyk IFNTUNH: Ekonomika ta upravlinnya v naftoviy i hazoviy promyslovosti 2016, 1, 30-35.

[27] Wim Teugels Wilfredo Salas An overview of the handling of extra heavy crude oil. 2018, 435. https://www.researchgate.net/publication/344275049_An_overview_of_the_ha...

[28] Stebelska, H. Novyy pohlyad na problemu klasyfikatsiyi naft. Visnyk Kharkivsʹkoho natsionalʹnoho universytetu im. V.N. Karazina: Heolohiya. Heohrafiya. Ekolohiya 2017, 46, 50-56.

[29] Processing of Heavy Crude Oils - Challenges and

Opportunities. Ramasamy Marappa Gounder, Ed.; London, 2019. http://dx.doi.org/10.5772/intechopen.74912
https://doi.org/10.5772/intechopen.74912

[30] Alaei, M.; Bazmi, M.; Rashidi, A.; Rahimi, A. Heavy Crude Oil Upgrading Using Homogenous Nanocatalyst. J. Pet. Sci. Eng. 2017, 158, 47-55. http://dx.doi.org/10.1016/j.petrol.2017.08.031
https://doi.org/10.1016/j.petrol.2017.08.031

[31] Mozafari, M.; Nasri, Z. Operational Conditions Effects on Iranian Heavy Oil Upgrading Using Microwave Irradiation. J. Pet. Sci. Eng. 2017, 151, 40-48. https://doi.org/10.1016/j.petrol.2017.01.028
https://doi.org/10.1016/j.petrol.2017.01.028

[32] Mansouri, H.; Mohammadidoust, A.; Mohammadi, F. An Optimization Study on Quality Promotion of Heavy Crude Oil Exposed Ultrasonic Waves and Magnetic Nanoparticles Addition. Chem. Eng. Process.: Process Intensif. 2021, 167, 108542. https://doi.org/10.1016/j.cep.2021.108542
https://doi.org/10.1016/j.cep.2021.108542

[33] Ilyin, S.O.; Ignatenko, V.Y.; Kostyuk, A.V.; Levin, I.S.; Bondarenko, G.N. Deasphalting of Heavy Crude Oil by Hexame-thyldisiloxane: The Effect of a Solvent/Oil Ratio on the Structure, Composition, and Properties of Precipitated Asphaltenes. J. Pet. Sci. Eng. 2022, 208, 109329. https://doi.org/10.1016/j.petrol.2021.109329
https://doi.org/10.1016/j.petrol.2021.109329

[34] Afzalinia, A.; Mirzaie, A.; Nikseresht, A.; Musabeygi, T. Ultrasound-Assisted Oxidative Desulfurization Process of Liquid Fuel by Phosphotungstic Acid Encapsulated in a Interpenetrating Amine-Functionalized Zn(II)-based MOF as Catalyst. Ultrason. Sonochem. 2017, 34, 713-720. https://doi.org/10.1016/j.ultsonch.2016.07.006
https://doi.org/10.1016/j.ultsonch.2016.07.006

[35] Ghahremani, H.; Nasri, Z.; Eikani, M.H. Ultrasound-Assisted Oxidative Desulfurization (UAOD) of Iranian Heavy Crude Oil: Investigation of Process Variables. J. Pet. Sci. Eng. 2021, 204, 108709. https://doi.org/10.1016/j.petrol.2021.108709
https://doi.org/10.1016/j.petrol.2021.108709

[36] Al-Bidry, M.A.; Azeez, R.A. Removal Sulfur Components from Heavy Crude Oil by Natural Clay. Ain Shams Eng. J. 2020, 11, 1265-1273. https://doi.org/10.1016/j.asej.2020.03.010
https://doi.org/10.1016/j.asej.2020.03.010

[37] Lam-Maldonado, M.; Melo-Banda, J.A.; Macias-Ferrer, D.; Schacht, P.; Mata-Padilla, J.M.; de la Torre, A.I.R.; Meraz-Melo, M.A.; Domínguez J.M. NiFe Nanocatalysts for the Hydrocracking Heavy Crude Oil. Catal. Today 2020, 349, 17-25. https://doi.org/10.1016/j.cattod.2018.08.005
https://doi.org/10.1016/j.cattod.2018.08.005

[38] Rana, M.S.; Ancheyta, J.; Maity, S.K.; Rayo, P. Heavy Crude Oil Hydroprocessing: A Zeolite-Based CoMo Catalyst and its Spent Catalyst Characterization. Catal. Today 2008, 130, 411-420. https://doi.org/10.1016/j.cattod.2007.10.106
https://doi.org/10.1016/j.cattod.2007.10.106