Субсолідусна будова системи MgO – Al2O3 – FeO – TiO2

Oksana Borysenko1, Sergey Logvinkov2, Galina Shabanova1, Yaroslav Pitak1, Andrii Ivashura2, Igor Ostapenko3
Affiliation: 
1National Technical University "Kharkiv Polytechnic Institute", 2, Kyrpychova str., 61002 Kharkiv, Ukraine 2Simon Kuznets Kharkov National University of Economics, 9-а, pr-t Nauki, 61166 Kharkiv, Ukraine 3TOV "Druzhkivskiy Vognetrivkiy zavod", 121-a, O. Tykhoho str., 84293 Druzhkovka, Ukraine onborisenko@ukr.net
DOI: 
https://doi.org/10.23939/chcht16.03.367
AttachmentSize
PDF icon full_text.pdf540.68 KB
Abstract: 
Досліджено субсолідусну будову чотирикомпонентної системи MgO – Al2O3 – FeO – TiO2 в шести температурних інтервалах. Визначено геометро-топологічні характеристики фаз досліджуваної системи, побудовано топологічні графи взаємозв'язку елементарних тетраедрів, визначено їхні об’єми, ступінь асиметрії для всіх температурних інтервалів. Прогнозовано оптимальні області складів для виробництва матеріалів, що містять шпінель, які лежать у межах елементарних тетраедрів: MgO – FeO – Mg2TiO4 – MgAl2O4, FeAl2O4 – Mg2TiO4 – FeO – Fe2TiO4, FeAl2O4 – Mg2TiO4 – MgAl2O4 – FeO та FeAl2O4 – MgTiO3 – MgAl2O4 – Al2O3.
References: 

[1] Ganesh, I. A Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications. Int. Mater. Rev. 2013, 58, 63-112. https://doi.org/10.1179/1743280412Y.0000000001
[2] Ma, Y.; Liu, X. Kinetics and Thermodynamics of Mg-Al Disorder in MgAl2O4-Spinel: A Review. Molecules 2019, 24, 1704.
https://doi.org/10.3390/molecules24091704
[3] Talimian, A.; Pouchly, V.; Maca, K.; Galusek, D. Densification of Magnesium Aluminate Spinel Using Manganese and Cobalt Fluoride as Sintering Aids. Materials 2020, 13, 102. https://doi.org/10.3390/ma13010102
[4] Jiang, P.; Chen, J.-H.; Yan, M.-W.; Li, B.; Su, J.-D. Morphology Characterization of Periclase–Hercynite Refractories by Reaction Sintering. Int. J. Miner. Metall. Mater. 2015, 22, 1219-1224. https://doi.org/10.1007/s12613-015-1188-6
[5] Zhang, X.; Yu, R.; Yu, X. Characteristics of Hercynite and its Application: In Refractories. China's Refract. 2012, 21, 17-22.
[6] Chen, Y.-B. Dielectric Properties and Crystal Structure of Mg2TiO4 Ceramics Substituting Mg2+ with Zn2+ and Co2+. J. Alloys Compd. 2012, 513, 481-486. https://doi.org/10.1016/j.jallcom.2011.10.095
[7] Bahtli, T.; Aksel, C.; Kavas, T. Corrosion Behavior of MgO-MgAl2O4-FeAl2O4 Composite Refractory Materials. J. Aust. Ceram. Soc. 2017, 53, 33-40. https://doi.org/10.1007/s41779-016-0006-6
[8] Rodríguez, Е.; Castillo, G-A.; Contreras, J.; Puente-Ornelas, R.; Aguilar-Martínez, J.A.; García, L.; Gómeza, C. Hercynite and Magnesium Aluminate Spinels Acting as a Ceramic Bonding in an Electrofused MgO–CaZrO3 Refractory Brick for the Cement Industry. Ceram. Int. 2012, 38, 6769-6775. https://doi.org/10.1016/j.ceramint.2012.05.071
[9] Aksoy, T.; Aksel, C.; Kavas, T. Hersinit İlaveli MgO-MgAl2O4 Kompozit Refrakterlerin Mekanik Özelliklerinin ve Mikroyapısal Karakteristiklerinin İncelenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 2014, 14, 523-529. https://dergipark.org.tr/tr/download/article-file/18710
[10] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Ostapenko, I.A. Geometro-Topologichni Kharakterystyky Subsolidusnoi budovy systemy MgO – FeO – TiO2. Vcheni zapysky Tavriysʹkoho Natsionalʹnoho Universytetu Imeni V.I. Vernadsʹkoho. Seriya: Tekhnichni nauky 2021, 32, 45-49. (in Ukrainian). https://doi.org/10.32838/2663-5941/2021.1-2/08
[11] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Korohodska, A.M.; Ivashura, M.M.; Ivashura, A.A. Subsolidusna budova systemy MgO – FeO – Al2O3. Bulletin of the National Technical University "KhPI". Series: New solutions in modern technology 2021, 2, 59-64. (in Ukrainian) https://doi.org/10.20998/2413-4295.2021.01.09
[12] Borysenko, O.M.; Logvinkov, S.M.; Shabanova, G.M.; Ostapenko, I.A.; Shumejko, V.M. Geometro-Topologichni Kharakterystyky Subsolidusnoi budovy systemy MgO – FeO – TiO2. Bulletin of the National Technical University «KhPI». Series: Chemistry, Chemical Technology and Ecology 2021, 1, 18-23. (in Ukrainian) https://doi.org/10.20998/2079-0821.2021.01.03
[13] Borisenko, O.; Logvinkov, S.; Shabanova, G.; Myrgorod, O. Thermodynamics of Solid-Phase Exchange Reactions Limiting the Subsolidus Structure of the System MgO-Al2O3-FeO-TiO2. Materials Science Forum 2021, 1038, 177-184. https://doi.org/10.4028/www.scientific.net/MSF.1038.177
[14] Babushkin, V.I.; Matveev, G.M.; Mchedlov-Petrosyan, O.P. Termodinamika silikatov; Moskva, 1986.
[15] Jung, I.-H.; Eriksson, G.; Wu, P.; Pelton, A. Thermodynamic Modeling of the Al2O3–Ti2O3–TiO2 System and Its Applications to the Fe–Al–Ti–O Inclusion Diagram. J. Alloys Compd. 2009, 49, 1290-1297. https://doi.org/10.2355/isijinternational.49.1290