Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Сорбційні властивості продуктів переробки бурого вугілля

Andrii Melnykov1, Denis Miroshnichenko2, Pavlo P. Karnozhytskyi2, Pavlo V. Karnozhytskyi2
Affiliation: 
1 Scientific Research Institution "Ukrainian Scientific Research Institute of Ecological Problems (USRIEP), 6 Bakulina St., Kharkiv 61166, Ukraine 2 National Technical University – «Kharkiv Polytechnic Institute» (NTU «KhPI»), 2 Kyrpychova St., Kharkiv 61002, Ukraine pavlokarnoenv@gmail.com
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
Роботу присвячено дослідженню сорбційних властивостей залишкового вугілля, що утворюється після гідрокавітаційного впливу на буре вугілля Олександрійського родовища. Метою роботи є вивчення можливості ефективнішого використання продуктів переробки бурого вугілля, що пройшло кавітаційну обробку. Гідрокавітація землистого бурого вугілля забезпечує повне і швидке вилучення гумусових кислот після екстракції розчином їдкого натру. При цьому залишкове вугілля подрібнюється до розмірів 10-20 мкм. Показано, що залишкове вугілля має високу сорбційну здатність (ступінь вилучення метиленового синього з розчину – понад 95%).
References: 

[1] Sinitsyna, A. O.; Karnozhytskyi, P.V. Oleksandriiske bure vuhillia yak dzherelo huminovykh rechovyn, Suchasni tekhnolohii pererobky palnykh kopalyn: tezy dopovidei 5 Mizhnarodnoi naukovo-tekhnichnoi konf., NTU “KhPI”, Kharkiv, Ukraine, April 14-15, 2022.
[2] Natsionalnyi hirnychyi universytet, Intekhproekt Ltd. Potencialnaya rol burogo uglya v energeticheskom balanse strany. DTEK, 2018. https://dtek.com/content/files/boris-sobko.pdf (accessed 2024-01-06).
[3] Diuzhev, V.; Sinitsyna, A.; Karnozhytskyi, P.P.; Karnozhytskyi, P.V. Sotsialno-ekonomichni, ekolohichni problemy zbilshennia standartiv zhyttiediialnosti naselennia iz zastosuvanniam innovatsiinykh tekhnolohii ochyshchennia vodnykh resursiv na osnovi vodorozchynnykh sorbentiv otrymanykh z ukrainskoho buroho vuhillia. Visnyk Natsionalnoho tekhnichnoho universytetu "Kharkivskyi politekhnichnyi instytut" (ekonomichni nauky) 2022, 4, 88–92. https://doi.org/10.20998/2519-4461.2022.4.88
[4] Shustov, O.; Bielov, O.P.; Perkova, T.I.; Adamchuk, A. Substantiation of the Ways to Use Lignite Concerning the Integrated Development of Lignite Deposits of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2018, 3, 5–13. https://doi.org/10.29202/nvngu/2018-3/6
[5] Makharadze, T.; Makharadze, G. Investigation of the Complex Formation Process of Lead (II) with Natural Macromolecular Organic Substances (Fulvic Acids) by the Solubility and Gel Chromatographic Methods. Chem. Chem. Technol. 2023, 17, 740–747. https://doi.org/10.23939/chcht17.04.740
[6] Yang, F.; Hou, Y.; Wu, W.; Liu, Zh. The Generation of Benzene Carboxylic Acids from Lignite and the Change in Structural Characteristics of the Lignite during Oxidation. Fuel 2017, 203, 214–221. https://doi.org/10.1016/j.fuel.2017.04.096
[7] Pyshyev, S.; Miroshnichenko, D.; Malík, I.; Contreras, A.B.; Hassan, N., Elrasoul, A.S. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61–73. https://doi.org/10.23939/chcht15.01.061
[8] Verrillo M.; Parisi M.; Savy D.; Caiazzo G.; Di Caprio R.; Luciano M.A.; Cacciapuoti S.; Fabbrocini G.; Piccolo A. Antiflammatory Activity and Potential Dermatological Applications of Characterized Humic Acids from a Lignite and a Green Compost. Sci. Rep. [Online] 2022, 12, 2152. https://www.nature.com/articles/s41598-022-06251-2 (accessed Feb 18, 2022).
[9] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023 17, 357–364. https://doi.org/10.23939/chcht17.02.357
[10] Lebedev, V.; Miroshnichenko, D.; Vytrykush, N.; Pyshyev, S.; Masikevych, A.; Filenko, O.; Tsereniuk, O.; Lysenko, L. Novel Biodegradable Polymers Modified by Humic Acids. Mater. Chem. Phys. 2024, 313, 128778. https://doi.org/10.1016/j.matchemphys.2023.128778
[11] Miroshnichenko, D.; Lebedeva, K.; Cherkashina, A.; Lebedev, V.; Tsereniuk, O.; Krygina, N. Study of Hybrid Modification with Humic Acids of Environmentally Safe Biodegradable Hydrogel Films Based on Hydroxypropyl Methylcellulose. C [Online] 2022, 8, 71. https://www.mdpi.com/2311-5629/8/4/71 (accessed Nov 30, 2022).
[12] Sinitsyna, A.; Karnozhitskiy, P.; Miroshnichenko, D.; Bilets, D. The Use of Brown Coal in Ukraine to Obtain Water-Soluble Sorbents. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 4, 5–10 https://doi.org/10.33271/nvngu/2022-4/005
[13] Sinitsyna, A.O.; Karnozhytskyi P.P. Bure vuhillia – syrovyna dlia otrymannia vodorozchynnykh sorbentiv. Intehrovani tekhnolohii ta enerhozberezhennia 2023, 3, 67–77.
[14] Kostić, I.T.; Andjelković, T.; Nikolić, R.S.; Bojić, A.; Purenovic, M.; Blagojević, S.; Andjelković, D. Copper(II) and Lead(II) Complexation by Humic Acid and Humic-Like Ligands. J. Serb. Chem. Soc. 2011, 76, 1325–1336. https://doi.org/10.2298/JSC110310115K
[15] Tipping, E. Cation Binding by Humic Substances; Cambridge University Press, 2005.
[16] Kyzioł-Komosińska, J.; Dzieniszewska, A.; Krzyżewska, I. Sorption Properties of Lignite for Some Acid Dyes. Przem. Chem. 2014, 93, 657–661.
[17] Saad Algarni, T.; Al-Mohaimeed, A.M. Water Purification by Adsorption of Pigments or Pollutants via Metaloxide. J. King Saud Univ. Sci. 2022, 34, 102339. https://doi.org/10.1016/j.jksus.2022.102339
[18] El Messaoudi, N.; El Khomri, M.; El Mouden, A.; Bouich, A.; Jada, A.; Lacherai, A.; Iqbal, H.; Mulla, S.; Kumar, V.; Américo-Pinheiro, J. Regeneration and Reusability of Non-Conventional Low-Cost Adsorbents to Remove Dyes from Wastewaters in Multiple Consecutive Adsorption–Desorption Cycles: A Review. Biomass Convers. Biorefin. 2022, 14, 11739–11756. https://doi.org/10.1007/s13399-022-03604-9
[19] Shmychkova, O.; Protsenko, V.; Velichenko, O. Ochyshchennia stichnykh vod vid farmatsevtychnykh preparativ: ohliad litratury. Pytannia khimii ta khimichnoi tekhnolohii 2021, 3, 4–31. https://doi.org/10.32434/0321-4095-2021-136-3-4-31
[20] Sablii, L.A.; Zhukova, V.S. Effective Technology of Pharmaceutical Enterprises Wastewater Local Treatment from Antibiotics. Biotechnol. Acta 2020, 13, 81–88. https://doi.org/10.15407/biotech13.03.081
[21] Vrchovecká, S.; Asatiani, N.; Antoš, V.; Wacławek, S.; Hrabák, P. Study of Adsorption Efficiency of Lignite, Biochar, and Polymeric Nanofibers for Veterinary Drugs in WWTP Effluent Water. Water Air Soil Pollut. 2023, 234, 268. https://doi.org/10.1007/s11270-023-06281-0
[22] Karczewska, A.; Chodak, T.; Kaszubkiewicz, J. The Suitability of Brown Coal as a Sorbent for Heavy Metals in Polluted Soils. Appl. Geochem. 1996, 11, 343–346. https://doi.org/10.1016/0883-2927(95)00043-7
[23] Amoah-Antwi, C.; Kwiatkowska-Malina, J.; Thornton, S. F.; Fenton, O.; Malina, G.; Szara, E. Restoration of Soil Quality Using Biochar and Brown Coal Waste: A Review. Sci. Total Environ. 2022, 722, 137852. https://doi.org/10.1016/j.scitotenv.2020.137852
[24] Symanowicz, B.; Toczko, R. Brown Coal Waste in Agriculture and Environmental Protection: A Review. Sustainability 2022, 15, 13371. https://doi.org/10.3390/su151813371
[25] Sinitsyna, A.O.; Karnozhytskyi, P.V.; Bilets, D. Yu. Modernization of the Complexation-Ultrafiltration Process for Removal of Copper Ions from Water. Pet. Coal [Online] 2021, 63, 1065–1069 https://www.vurup.sk/petroleum/2021/volume-63/ (accessed Nov 18, 2021).
[26] Fito, J.; Abewaa, M.; Mengistu, A.; Angassa, K.; Demeke Ambaye, A.; Moyo, W.; Nkambule, Th. Adsorption of Methylene Blue from Textile Industrial Wastewater Using Activated Carbon Developed from Rumex abyssinicus Plant. Sci. Rep. [Online] 2023, 13, 5427. https://www.nature.com/articles/s41598-023-32341-w (accessed Apr 3, 2023).
[27] Kuang, Y.; Zhang, X.; Zhou, S. Adsorption of Methylene Blue in Water onto Activated Carbon by Surfactant Modification. Water 2020, 12, 587. https://doi.org/10.3390/w12020587
[28] Hoc Thang, N.; Sy Khang, D.; Duy Hai, T.; Thi Nga, D.; Dinh Tuan, P. Methylene Blue Adsorption Mechanism of Activated Carbon Synthesised from Cashew Nut Shells. RSC Advances 2021, 11, 26563–26570. https://doi.org/10.1039/d1ra04672a
[29] Yan, H.; Zhang, W.; Kan, X.; Dong, L.; Jiang, Z.; Li, H.; Yang, H.; Cheng, R. Sorption of Methylene Blue by Carboxymethyl Cellulose and Reuse Process in a Secondary Sorption. Colloids Surf. A: Physicochem. Eng. Asp. 2011, 380, 143–151. https://doi.org/10.1016/j.colsurfa.2011.02.045
[30] Al-Ghouti, M.A.; Al-Absi, R.S. Mechanistic Understanding of the Adsorption and Thermodynamic Aspects of Cationic Methylene Blue Dye onto Cellulosic Olive Stones Biomass from Wastewater. Sci. Rep. [Online] 2020, 10, 15928. https://www.nature.com/articles/s41598-020-72996-3 (accessed Sep 28, 2020).
[31] Djama, C.; Bouguettoucha, A.; Chebli, D.; Amrane, A.; Tahraoui, H.; Zhang, J.; Mouni, L. Experimental and Theoretical Study of Methylene Blue Adsorption on a New Raw Material, Cynara scolymus—A Statistical Physics Assessment. Sustainability 2023, 15, 10364. https://doi.org/10.3390/su151310364
[32] Li, H.; Budarin, V.L.; Clark, J.H.; North, M.; Wu, X. Rapid and Efficient Adsorption of Methylene Blue Dye from Aqueous Solution by Hierarchically Porous, Activated Starbons®: Mechanism and Porosity Dependence. J. Hazard. Mater. 2022, 436, 129174. https://doi.org/10.1016/j.jhazmat.2022.129174
[33] Ilgin, P.; Onder, A.; Kıvanç, M.R.; Ozay, H.; Ozay, O. Adsorption of Methylene Blue from Aqueous Solution Using poly(2-Acrylamido-2-methyl-1-propanesulfonic acid-co-2-Hydroxyethyl Methacrylate) Hydrogel Crosslinked by Activated Carbon. J. Macromol. Sci. Part A Pure Appl. Chem. 2023, 60, 135–149. https://doi.org/10.1080/10601325.2023.2165945
[34] Kravchenko, O.V.; Suvorova, Y.H.; Homan, V.A.; Musyenko, E.Iu.; Danylenko, A.M. Kompleks dlya provedeniya issledovanij processov proizvodstva, podgotovki i szhiganiya novyh vidov kompozicionnyh topliv. Tekhnichna teplofizyka ta promyslova teploenerhetyka 2013, 5, 150–160.