Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Саліцилові альдегіди, отримані з 2-гідрокси-5-хлорометилбензальдегіду: синтез і реакції

Gheorghe Roman1
Affiliation: 
1 Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Vodă, 700487 Iaşi, Romania gheorghe.roman@icmpp.ro
DOI: 
https://doi.org/10.23939/chcht17.03.532
AttachmentSize
PDF icon full_text.pdf351.6 KB
Abstract: 
Анотація. Синтезовано ряд саліцилових альдегідів за-мі¬щенням хорошої відхідної групи – атома хлору – у 2 гідрокси-5-хлорометилбензальдегіді різними O-, S- або N-нуклеофілами. Досліджено участь деяких із цих саліцилових альдегідів у синтезі гетероциклів, таких як бензофуран або кумарин, а також застосування їх як субстрату в реакції Петасіса бороно-Манніха.
References: 

[1] Masesane, I.B.; Desta, Z.Y. Reactions of Salicylaldehyde and Enolates or Their Equivalents: Versatile Synthetic Routes to Chro-mane Derivatives. Beilstein J. Org. Chem. 2012, 8, 2166-2175. https://doi.org/10.3762/bjoc.8.244
[2] Sebastian, A.; Srinivasulu, V.; Abu-Yousef, I.A.; Gorka, O.; Al-Tel, T.H. Domino Transformations of Ene/Yne Tethered Salicy-laldehyde Derivatives: Pluripotent Platforms for the Construction of High sp3 Content and Privileged Architectures. Chem. – Eur. J. 2019, 25, 15710-15735. https://doi.org/10.1002/chem.201902596
[3] Sheykhi, S.; Pedrood, K.; Amanlou, M.; Larijani, B.; Mahdavi, M. Synthesis of Chromene-Fused Heterocycles by the Intramolecular–Diels–Alder Reaction: An Overview. Tetrahedron 2021, 102, 132524. https://doi.org/10.1016/j.tet.2021.132524
[4] Koca, M.; Ertürk, A.S.; Bozca, O. Rap-Stoermer Reaction: TEA Catalyzed One-Pot Efficient Synthesis of Benzofurans and Optimization of Different Reaction Conditions. ChemistrySelect 2022, 7, e202202243. https://doi.org/10.1002/slct.202202243
[5] Phan, P.-T.T.; Nguyen, T.-T.T.; Nguyen, H.-N.T.; Le, B.-K.N.; Vu, T.T.; Tran, D.C.; Pham, T.-A.N. Synthesis and Bioactivity Evaluation of Novel 2-Salicyloylbenzofurans as Antibacterial Agents. Molecules 2017, 22, 687. https://doi.org/10.3390/molecules22050687
[6] Zhang, H.; Yan, Y.; Li, Y.; Gao, W. A Facile Synthesis of Novel Benzofuran-2-yl(9-methyl-9H-carbazol-3-yl)methanones. Res. Chem. Intermed. 2012, 38, 1909-1919. https://doi.org/10.1007/s11164-012-0513-1
[7] Dale, T.J.; Sather, A.C.; Rebek Jr., J. Synthesis of Novel Aryl-1,2-oxazoles from ortho-Hydroxyaryloximes. Tetrahedron Lett. 2009, 50, 6173-6175. https://doi.org/10.1016/j.tetlet.2009.08.086
[8] Kalkhambkar, R.G.; Yuvaraj, H. Triflic Anhydride: A Mild Reagent for Highly Efficient Synthesis of 1,2-Benzisoxazoles, Isoxazolo, and Isothiazolo Quinolines Without Additive or Base. Synth. Commun. 2014, 44, 547-555. https://doi.org/10.1080/00397911.2013.821617
[9] Iranpoor, N.; Firouzabadi, H.; Nowrouzi, N. A Novel Method for the Highly Efficient Synthesis of 1,2-Benzisoxazoles under Neutral Conditions Using the Ph3P/DDQ System. Tetrahedron Lett. 2006, 47, 8247-8250. https://doi.org/10.1016/j.tetlet.2006.09.120
[10] Tkachenko, V.V.; Muravyova, E.A.; Desenko, S.M.; Shishkin, O.V.; Shishkina, S.V.; Sysoiev, D.O.; Müller T.J.J.; Chebanov, V.A. The Unexpected Influence of Aryl Substituents in N-Aryl-3-Oxobutanamides on the Behavior of Their Multicomponent Reactions with 5-Amino-3-Methylisoxazole and Salicylaldehyde. Beilstein J. Org. Chem. 2014, 10, 3019-3030. https://doi.org/10.3762/bjoc.10.320
[11] Voskressensky, L.G.; Festa, A.A.; Varlamov, A.V. Domino Reactions Based on Knoevenagel Condensation in the Synthesis of Heterocyclic Compounds. Recent Advances. Tetrahedron 2014, 70, 551-572. https://doi.org/10.1016/j.tet.2013.11.011
[12] Wu, P.; Givskov, M.; Nielsen, T.E. Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chem. Rev. 2019, 119, 11245-11290. https://doi.org/10.1021/acs.chemrev.9b00214
[13] Candeias, N.R.; Montalbano, F.; Cal, P.M.S.D.; Gois, P.M.P. Boronic Acids and Esters in the Petasis-Borono Mannich Multi-component Reaction. Chem. Rev. 2010, 110, 6169–6193. https://doi.org/10.1021/cr100108k
[14] Andruh, M. The Exceptionally Rich Coordination Chemistry Generated by Schiff-Base Ligands Derived from o-Vanillin. Dalton Trans. 2015, 44, 16633-16653. https://doi.org/10.1039/c5dt02661j
[15] Mazzoni, R.; Roncaglia, F.; Rigamonti, L. When the Metal Makes the Difference: Template Syntheses of Tridentate and Tetra-dentate Salen-Type Schiff Base Ligands and Related Complexes. Crystals 2021, 11, 483. https://doi.org/10.3390/cryst11050483
[16] Enyedy, É.A.; Petrasheuskaya, T.V.; Kiss, M.A.; Wernitznig, D.; Wenisch, D.; Keppler, B.K.; Spengler, G.; May, N.V.; Frank, É.; Dömötör, O. Complex Formation of an Estrone-Salicylaldehyde Semicarbazone Hybrid with Copper(II) and Gallium(III): Solution Equilibria and Biological Activity. J. Inorg. Biochem. 2021, 220, 111468. https://doi.org/10.1016/j.jinorgbio.2021.111468
[17] Sako, M.; Takizawa, S.; Sasai, H. Chiral Vanadium Complex-Catalyzed Oxidative Coupling of Arenols. Tetrahedron 2020, 76, 131645. https://doi.org/10.1016/j.tet.2020.131645
[18] Berhanu, A.L.; Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K.-H. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. TrAC – Trends Anal. Chem. 2019, 116, 74-91. https://doi.org/10.1016/j.trac.2019.04.025
[19] Zhong, T.; Jiang, N.; Li, C.; Wang, G. A Highly Selective Fluorescence and Absorption Sensor for Rapid Recognition and Detection of Cu2+ Ions in Aqueous Solution and Film. Lumines-cence 2022, 37, 391-398. https://doi.org/10.1002/bio.4180
[20] Ganesan, G.; Pownthurai, B.; Kotwal, N.K.; Yadav, M.;
Chetti, P.; Chaskar, A. Function-Oriented Synthesis of Fluorescent Chemosensor for Selective Detection of Al3+ in Neat Aqueous Solution: Paperstrip Detection & DNA Bioimaging. J. Photochem. Photobiol. A Chem. 2022, 425, 113699. https://doi.org/10.1016/j.jphotochem.2021.113699
[21] Sun, Y.; Lu, Y.; Bian, M.; Yang, Z.; Ma, X.; Liu, W. Pt(II) and Au(III) Complexes Containing Schiff-base Ligands: A Promising Source for Antitumor Treatment. Eur. J. Med. Chem. 2021, 211, 113098. https://doi.org/10.1016/j.ejmech.2020.113098
[22] Tanaka, T.; Tsurutani, K.; Komatsu, A.; Ito, T.; Iida, K.; Fujii, Y.; Nakano, Y.; Usui, Y.; Fukuda, Y.; Chikira, M. Synthesis of New Cationic Schiff Base Complexes of Copper(II) and Their Selective Binding with DNA. Bull. Chem. Soc. Jpn. 1997, 70, 615-629. https://doi.org/10.1246/bcsj.70.615
[23] Chew, S.T.; Lo, K.M.; Lee, S.K.; Heng, M.P.; Teoh, W.Y.; Sim, K.S.; Tan, K.W. Copper Complexes with Phosphonium Con-taining Hydrazone Ligand: Topoisomerase Inhibition and Cytotox-icity Study. Eur. J. Med. Chem. 2014, 76, 397-407. https://doi.org/10.1016/j.ejmech.2014.02.049
[24] Akkoç, S.; Kayser, V.; İlhan, İ.Ö. Synthesis and in vitro Anti-cancer Evaluation of Some Benzimidazolium Salts. J. Heterocycl. Chem. 2019, 56, 2934-2944. https://doi.org/10.1002/jhet.3687
[25] Kadwa, E.; Friedrich, H.B.; Bala, M.D. Structural Identifica-tion of Products from the Chloromethylation of Salicylaldehyde. Synlett 2019, 30, 44-48. https://doi.org/10.1055/s-0037-1610334
[26] Shaker, M.; Beni, A.S. Cu@SB-MCM-41 Composite as an Efficient and Recyclable Nanocatalyst for the Synthesis of Polyhy-droquinoline Derivatives via Unsymmetrical Hantzsch Reaction. J. Porous Mater. 2021, 28, 435-449. https://doi.org/10.1007/s10934-020-01006-8
[27] Sanad, S.M.H.; Mekky, A.E.M. Efficient Synthesis and Characterization of Novel bis-Heterocyclic Derivatives and Benzo-Fused Macrocycles Containing Oxazolone or Imidazolone Subunits. J. Hete¬rocycl. Chem. 2020, 57, 3930-3942. https://doi.org/10.1002/jhet.4102
[28] Stoermer, R.; Behn, K. Synthese Aromatischer Alkohole mit Formaldehyd. Ber. Dtsch. Chem. Ges. 1902, 34, 2455-2460. https://doi.org/10.1002/cber.190103402188
[29] Angyal, S.J.; Morris, P.J.; Tetaz, J.R.; Wilson, J.G. The Sommelet Reaction. Part III. The Choice of Solvent and the Effect of Substituents. J. Chem. Soc. 1950, 1950, 2141-2145. https://doi.org/10.1039/JR9500002141
[30] Wei, Z.; Bi, H.; Liu, Y.; Nie, H.; Yao, L.; Wang, S.; Yang, J.; Wang, Y.; Liu, X.; Zheng, Z. Design, Synthesis and Evaluation of New Classes of Nonquaternary Reactivators for Acetylcholineste-rase Inhibited by Organophosphates. Bioorg. Chem. 2018, 81, 681-688. https://doi.org/10.1016/j.bioorg.2018.09.025
[31] Elshaarawy, R.F.M.; Mostafa, T.B.; Refaee, A.A.; El-Sawi, E.A. Ionic Sal-SG Schiff Bases as New Synergetic Chemotherapeutic Candidates: Synthesis, Metalation with Pd(II) and in vitro Pharmacological Evaluation. RSC Adv. 2015, 5, 68260-68269. https://doi.org/10.1039/C5RA11083A
[32] Ghamari Kargar, P.; Noorian, M.; Chamani, E.; Bagherzade, G.; Kiani, Z. Synthesis, Characterization and Cytotoxicity Evalua-tion of a Novel Magnetic Nanocomposite with Iron Oxide Depo-sited on Cellulose Nanofibers with Nickel (Fe3O4@NFC@ONSM-Ni). RSC Adv. 2021, 11, 17413-17430. https://doi.org/10.1039/D1RA01256H
[33] Dalla Cort, A.; Mandolini, L.; Pasquini, C.; Schiaffino, L. A Novel Ditopic Zinc-Salophen Macrocycle: A Potential Two-Stationed Wheel for [2]-Pseudorotaxanes. Org. Biomol. Chem. 2006, 4, 4543-4546. https://doi.org/10.1039/B613705A
[34] Forte, G.; Maglione, M.S.; Tulli, L.G.; Fantoni, A.; Dalla Cort, A. A Newly Designed Water Soluble Uranyl-Salophen Complex for Anion Recognition. ChemistryOpen 2021, 10, 848-851. https://doi.org/10.1002/open.202100182
[35] Ho, C.-Y. Cyanative Alkene–Aldehyde Coupling: Ni(0)–NHC–Et2AlCN Mediated Chromanols Synthesis with High cis-Selectivity at Room Temperature. Chem. Commun. 2010, 46, 466-468. https://doi.org/10.1039/B918626C
[36] Kazemnejadi, M.; Shakeri, A.; Mohammadi, M.; Tabefam, M. Direct Preparation of Oximes and Schiff Bases by Oxidation of Primary Benzylic or Allylic Alcohols in the Presence of Primary Amines Using Mn(III) Complex of Polysalicylaldehyde as an Efficient and Selective Heterogeneous Catalyst by Molecular Oxygen. J. Iran. Chem. Soc. 2017, 14, 1917-1933. https://doi.org/10.1007/s13738-017-1131-z
[37] Coppola, G. M. Amberlyst-15, a Superior Acid Catalyst for the Cleavage of Acetals. Synthesis 1984, 1984, 1021-1023. https://doi.org/10.1055/s-1984-31059
[38] Meléndez, J.; North, M.; Villuendas, P. One-Component Catalysts for Cyclic Carbonate Synthesis. Chem. Commun. 2009, 2009, 2577-2579. https://doi.org/10.1039/B900180H
[39] Wei, X.; Li, J.; Zhou, B.; Qin, S. Synthesis, Oxygenation and Catalytic Epoxidation Performance of Salen and Salophen Transi-tion-Metal Complexes with Aza-Crown or Morpholino Pendants. Transition Met. Chem. 2004, 29, 457-462. https://doi.org/10.1023/B:TMCH.0000027463.00158.6b
[40] Bagherzadeh, M.; Zare, M. Synthesis, Characterization and Catalysis of Recyclable New Piperazine-Bridged Mo(VI) Polymers [MoO2(Salen) (Piperazine)]n in Highly Selective Oxygenation of Alkenes and Sulfides. J. Coord. Chem. 2013, 66, 2885-2900. https://doi.org/10.1080/00958972.2013.818671
[41] Docherty, K.M.; Kulpa, Jr., C.F. Toxicity and Antimicrobial Activity of Imidazolium and Pyridinium Ionic Liquids. Green Chem. 2005, 7, 185-189. https://doi.org/10.1039/B419172B
[42] Modak, R.; Mondal, B.; Howlader, P.; Mukherjee, P.S. Self-Assembly of a "Cationic-Cage": Via the Formation of Ag-Carbene Bonds Followed by Imine Condensation. Chem. Commun. 2019, 55, 6711-6714. https://doi.org/10.1039/C9CC02341K
[43] Boldescu, V.; Sucman, N.; Hassan, S.; Iqbal, J.; Neamtu, M.; Lecka, J.; Sévigny, J.; Prodius, D.; Macaev, F. Ectonucleotidase Inhibitory and Redox Activity of Imidazole-Based Organic Salts and Ionic Liquids. ChemMedChem, 2018, 13, 2297-2304. https://doi.org/10.1002/cmdc.201800520
[44] Lecarme, L.; Prado, E.; De Rache, A.; Nicolau-Travers, M.-L.; Bonnet, R.; van der Heyden, A.; Philouze, C.; Gomez, D.; Mergny, J.-L.; Jamet, H.; et al. Interaction of Polycationic Ni(II)-Salophen Complexes with G-Quadruplex DNA. Inorg. Chem. 2014, 53, 12519-12531. https://doi.org/10.1021/ic502063r
[45] Elshaarawy, R.F.M.; Tadros, H.R.Z.; Abd El-Aal, R.M.; Mustafa, F.H.A.; Soliman, Y.A.; Hamed, M.A. Hybrid Molecules Comprising 1,2,4-Triazole or Diaminothiadiazole Schiff-Bases and Ionic Liquid Moieties as Potent Antibacterial and Marine Antibio-fouling Nominees. J. Environ. Chem. Eng. 2016, 4, 2754-2764. https://doi.org/10.1016/j.jece.2016.05.016
[46] Neto, Í.; Andrade, J.; Fernandes, A.S.; Pinto Reis, C.; Salunke, J.K.; Priimagi, A.; Candeias, N.R.; Rijo, P. Multicomponent Petasis-Borono Mannich Preparation of Alkylaminophenols and Antimicrobial Activity Studies. ChemMedChem 2016, 11, 2015-2023. https://doi.org/10.1002/cmdc.201600244
[47] Doan, P.; Karjalainen, A.; Chandraseelan, J.G.; Sandberg, O.; Yli-Harja, O.; Rosholm, T.; Franzen, R.; Kandhavelu, M. Synthesis and Biological Screening for Cytotoxic Activity of N-Substituted Indolines and Morpholines. Eur. J. Med. Chem. 2016, 120, 296-303. https://doi.org/10.1016/j.ejmech.2016.05.024
[48] Wang, Q.; Finn, M. G. 2H-Chromenes from Salicylaldehydes by a Catalytic Petasis Reaction. Org. Lett. 2000, 2, 4063-4065. https://doi.org/10.1021/ol006710r
[49] Paizs, C.; Toşa, M.; Majdik, C.; Moldovan, P.; Novák, L.; Kolonits, P.; Marcovici, A.; Irimie, F.-D.; Poppe, L. Optically Active 1-(Benzofuran-2-yl)ethanols and Ethane-1,2-diols by Enantiotopic Selective Bioreductions. Tetrahedron Asymmetry 2003, 14, 1495-1501. https://doi.org/10.1016/S0957-4166(03)00222-2
[50] Alizadeh, A.; Ghanbaripour, R. An Efficient Synthesis of Pyrrolo[2,1-a]isoquinoline Derivatives Containing Coumarin Skeletons via a One-Pot, Three-Component Reaction. Res. Chem. Intermed. 2015, 41, 8785-8796. https://doi.org/10.1007/s11164-015-1928-2
[51] Villa-Martínez, C.A.; Magaña-Vergara, N.E.; Rodríguez, M.; Mojica-Sánchez, J.P.; Ramos-Organillo, Á.A.; Barroso-Flores, J.; Padilla-Martinez, I.I.; Martínez-Martínez, F.J. Synthesis, Optical Characterization in Solution and Solid-State, and DFT Calculations of 3-Acetyl and 3-(1′-(2′-Phenylhydrazono)ethyl)-coumarin-(7)-substituted Derivatives. Molecules 2022, 27, 3677. https://doi.org/10.3390/molecules27123677