Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Salicylaldehydes Derived from 5-Chloromethyl-2-hydroxybenzaldehyde – Synthesis and Reactions

Gheorghe Roman1
Affiliation: 
1 Department of Inorganic Polymers, Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Vodă, 700487 Iaşi, Romania gheorghe.roman@icmpp.ro
DOI: 
https://doi.org/10.23939/chcht17.03.532
AttachmentSize
PDF icon full_text.pdf351.6 KB
Abstract: 
A series of salicylaldehydes have been prepared through the replacement of the easily leaving chlorine atom in 5-chloromethyl-2-hydroxybenzaldehyde with various O-, S- or N-nucleophiles. The involvement of a few of these salicylaldehydes in the synthesis of heterocycles such as benzofuran or coumarin, or as substrate in the Petasis borono-Mannich reaction has been explored.
References: 

[1] Masesane, I.B.; Desta, Z.Y. Reactions of Salicylaldehyde and Enolates or Their Equivalents: Versatile Synthetic Routes to Chro-mane Derivatives. Beilstein J. Org. Chem. 2012, 8, 2166-2175. https://doi.org/10.3762/bjoc.8.244
https://doi.org/10.3762/bjoc.8.244

[2] Sebastian, A.; Srinivasulu, V.; Abu-Yousef, I.A.; Gorka, O.; Al-Tel, T.H. Domino Transformations of Ene/Yne Tethered Salicy-laldehyde Derivatives: Pluripotent Platforms for the Construction of High sp3 Content and Privileged Architectures. Chem. - Eur. J. 2019, 25, 15710-15735. https://doi.org/10.1002/chem.201902596
https://doi.org/10.1002/chem.201902596

[3] Sheykhi, S.; Pedrood, K.; Amanlou, M.; Larijani, B.; Mahdavi, M. Synthesis of Chromene-Fused Heterocycles by the Intramolecular-Diels-Alder Reaction: An Overview. Tetrahedron 2021, 102, 132524. https://doi.org/10.1016/j.tet.2021.132524
https://doi.org/10.1016/j.tet.2021.132524

[4] Koca, M.; Ertürk, A.S.; Bozca, O. Rap-Stoermer Reaction: TEA Catalyzed One-Pot Efficient Synthesis of Benzofurans and Optimization of Different Reaction Conditions. ChemistrySelect 2022, 7, e202202243. https://doi.org/10.1002/slct.202202243
https://doi.org/10.1002/slct.202202243

[5] Phan, P.-T.T.; Nguyen, T.-T.T.; Nguyen, H.-N.T.; Le, B.-K.N.; Vu, T.T.; Tran, D.C.; Pham, T.-A.N. Synthesis and Bioactivity Evaluation of Novel 2-Salicyloylbenzofurans as Antibacterial Agents. Molecules 2017, 22, 687. https://doi.org/10.3390/molecules22050687
https://doi.org/10.3390/molecules22050687

[6] Zhang, H.; Yan, Y.; Li, Y.; Gao, W. A Facile Synthesis of Novel Benzofuran-2-yl(9-methyl-9H-carbazol-3-yl)methanones. Res. Chem. Intermed. 2012, 38, 1909-1919. https://doi.org/10.1007/s11164-012-0513-1
https://doi.org/10.1007/s11164-012-0513-1

[7] Dale, T.J.; Sather, A.C.; Rebek Jr., J. Synthesis of Novel Aryl-1,2-oxazoles from ortho-Hydroxyaryloximes. Tetrahedron Lett. 2009, 50, 6173-6175. https://doi.org/10.1016/j.tetlet.2009.08.086
https://doi.org/10.1016/j.tetlet.2009.08.086

[8] Kalkhambkar, R.G.; Yuvaraj, H. Triflic Anhydride: A Mild Reagent for Highly Efficient Synthesis of 1,2-Benzisoxazoles, Isoxazolo, and Isothiazolo Quinolines Without Additive or Base. Synth. Commun. 2014, 44, 547-555. https://doi.org/10.1080/00397911.2013.821617
https://doi.org/10.1080/00397911.2013.821617

[9] Iranpoor, N.; Firouzabadi, H.; Nowrouzi, N. A Novel Method for the Highly Efficient Synthesis of 1,2-Benzisoxazoles under Neutral Conditions Using the Ph3P/DDQ System. Tetrahedron Lett. 2006, 47, 8247-8250. https://doi.org/10.1016/j.tetlet.2006.09.120
https://doi.org/10.1016/j.tetlet.2006.09.120

[10] Tkachenko, V.V.; Muravyova, E.A.; Desenko, S.M.; Shishkin, O.V.; Shishkina, S.V.; Sysoiev, D.O.; Müller T.J.J.; Chebanov, V.A. The Unexpected Influence of Aryl Substituents in N-Aryl-3-Oxobutanamides on the Behavior of Their Multicomponent Reactions with 5-Amino-3-Methylisoxazole and Salicylaldehyde. Beilstein J. Org. Chem. 2014, 10, 3019-3030. https://doi.org/10.3762/bjoc.10.320
https://doi.org/10.3762/bjoc.10.320

[11] Voskressensky, L.G.; Festa, A.A.; Varlamov, A.V. Domino Reactions Based on Knoevenagel Condensation in the Synthesis of Heterocyclic Compounds. Recent Advances. Tetrahedron 2014, 70, 551-572. https://doi.org/10.1016/j.tet.2013.11.011
https://doi.org/10.1016/j.tet.2013.11.011

[12] Wu, P.; Givskov, M.; Nielsen, T.E. Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chem. Rev. 2019, 119, 11245-11290. https://doi.org/10.1021/acs.chemrev.9b00214
https://doi.org/10.1021/acs.chemrev.9b00214

[13] Candeias, N.R.; Montalbano, F.; Cal, P.M.S.D.; Gois, P.M.P. Boronic Acids and Esters in the Petasis-Borono Mannich Multi-component Reaction. Chem. Rev. 2010, 110, 6169-6193. https://doi.org/10.1021/cr100108k
https://doi.org/10.1021/cr100108k

[14] Andruh, M. The Exceptionally Rich Coordination Chemistry Generated by Schiff-Base Ligands Derived from o-Vanillin. Dalton Trans. 2015, 44, 16633-16653. https://doi.org/10.1039/c5dt02661j
https://doi.org/10.1039/C5DT02661J

[15] Mazzoni, R.; Roncaglia, F.; Rigamonti, L. When the Metal Makes the Difference: Template Syntheses of Tridentate and Tetra-dentate Salen-Type Schiff Base Ligands and Related Complexes. Crystals 2021, 11, 483. https://doi.org/10.3390/cryst11050483
https://doi.org/10.3390/cryst11050483

[16] Enyedy, É.A.; Petrasheuskaya, T.V.; Kiss, M.A.; Wernitznig, D.; Wenisch, D.; Keppler, B.K.; Spengler, G.; May, N.V.; Frank, É.; Dömötör, O. Complex Formation of an Estrone-Salicylaldehyde Semicarbazone Hybrid with Copper(II) and Gallium(III): Solution Equilibria and Biological Activity. J. Inorg. Biochem. 2021, 220, 111468. https://doi.org/10.1016/j.jinorgbio.2021.111468
https://doi.org/10.1016/j.jinorgbio.2021.111468

[17] Sako, M.; Takizawa, S.; Sasai, H. Chiral Vanadium Complex-Catalyzed Oxidative Coupling of Arenols. Tetrahedron 2020, 76, 131645. https://doi.org/10.1016/j.tet.2020.131645
https://doi.org/10.1016/j.tet.2020.131645

[18] Berhanu, A.L.; Gaurav; Mohiuddin, I.; Malik, A.K.; Aulakh, J.S.; Kumar, V.; Kim, K.-H. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. TrAC - Trends Anal. Chem. 2019, 116, 74-91. https://doi.org/10.1016/j.trac.2019.04.025
https://doi.org/10.1016/j.trac.2019.04.025

[19] Zhong, T.; Jiang, N.; Li, C.; Wang, G. A Highly Selective Fluorescence and Absorption Sensor for Rapid Recognition and Detection of Cu2+ Ions in Aqueous Solution and Film. Lumines-cence 2022, 37, 391-398. https://doi.org/10.1002/bio.4180
https://doi.org/10.1002/bio.4180

[20] Ganesan, G.; Pownthurai, B.; Kotwal, N.K.; Yadav, M.;

Chetti, P.; Chaskar, A. Function-Oriented Synthesis of Fluorescent Chemosensor for Selective Detection of Al3+ in Neat Aqueous Solution: Paperstrip Detection & DNA Bioimaging. J. Photochem. Photobiol. A Chem. 2022, 425, 113699. https://doi.org/10.1016/j.jphotochem.2021.113699
https://doi.org/10.1016/j.jphotochem.2021.113699

[21] Sun, Y.; Lu, Y.; Bian, M.; Yang, Z.; Ma, X.; Liu, W. Pt(II) and Au(III) Complexes Containing Schiff-base Ligands: A Promising Source for Antitumor Treatment. Eur. J. Med. Chem. 2021, 211, 113098. https://doi.org/10.1016/j.ejmech.2020.113098
https://doi.org/10.1016/j.ejmech.2020.113098

[22] Tanaka, T.; Tsurutani, K.; Komatsu, A.; Ito, T.; Iida, K.; Fujii, Y.; Nakano, Y.; Usui, Y.; Fukuda, Y.; Chikira, M. Synthesis of New Cationic Schiff Base Complexes of Copper(II) and Their Selective Binding with DNA. Bull. Chem. Soc. Jpn. 1997, 70, 615-629. https://doi.org/10.1246/bcsj.70.615
https://doi.org/10.1246/bcsj.70.615

[23] Chew, S.T.; Lo, K.M.; Lee, S.K.; Heng, M.P.; Teoh, W.Y.; Sim, K.S.; Tan, K.W. Copper Complexes with Phosphonium Con-taining Hydrazone Ligand: Topoisomerase Inhibition and Cytotox-icity Study. Eur. J. Med. Chem. 2014, 76, 397-407. https://doi.org/10.1016/j.ejmech.2014.02.049
https://doi.org/10.1016/j.ejmech.2014.02.049

[24] Akkoç, S.; Kayser, V.; İlhan, İ.Ö. Synthesis and in vitro Anti-cancer Evaluation of Some Benzimidazolium Salts. J. Heterocycl. Chem. 2019, 56, 2934-2944. https://doi.org/10.1002/jhet.3687
https://doi.org/10.1002/jhet.3687

[25] Kadwa, E.; Friedrich, H.B.; Bala, M.D. Structural Identifica-tion of Products from the Chloromethylation of Salicylaldehyde. Synlett 2019, 30, 44-48. https://doi.org/10.1055/s-0037-1610334
https://doi.org/10.1055/s-0037-1610334

[26] Shaker, M.; Beni, A.S. Cu@SB-MCM-41 Composite as an Efficient and Recyclable Nanocatalyst for the Synthesis of Polyhy-droquinoline Derivatives via Unsymmetrical Hantzsch Reaction. J. Porous Mater. 2021, 28, 435-449. https://doi.org/10.1007/s10934-020-01006-8
https://doi.org/10.1007/s10934-020-01006-8

[27] Sanad, S.M.H.; Mekky, A.E.M. Efficient Synthesis and Characterization of Novel bis-Heterocyclic Derivatives and Benzo-Fused Macrocycles Containing Oxazolone or Imidazolone Subunits. J. Hete¬rocycl. Chem. 2020, 57, 3930-3942. https://doi.org/10.1002/jhet.4102
https://doi.org/10.1002/jhet.4102

[28] Stoermer, R.; Behn, K. Synthese Aromatischer Alkohole mit Formaldehyd. Ber. Dtsch. Chem. Ges. 1902, 34, 2455-2460. https://doi.org/10.1002/cber.190103402188
https://doi.org/10.1002/cber.190103402188

[29] Angyal, S.J.; Morris, P.J.; Tetaz, J.R.; Wilson, J.G. The Sommelet Reaction. Part III. The Choice of Solvent and the Effect of Substituents. J. Chem. Soc. 1950, 1950, 2141-2145. https://doi.org/10.1039/JR9500002141
https://doi.org/10.1039/jr9500002141

[30] Wei, Z.; Bi, H.; Liu, Y.; Nie, H.; Yao, L.; Wang, S.; Yang, J.; Wang, Y.; Liu, X.; Zheng, Z. Design, Synthesis and Evaluation of New Classes of Nonquaternary Reactivators for Acetylcholineste-rase Inhibited by Organophosphates. Bioorg. Chem. 2018, 81, 681-688. https://doi.org/10.1016/j.bioorg.2018.09.025
https://doi.org/10.1016/j.bioorg.2018.09.025

[31] Elshaarawy, R.F.M.; Mostafa, T.B.; Refaee, A.A.; El-Sawi, E.A. Ionic Sal-SG Schiff Bases as New Synergetic Chemotherapeutic Candidates: Synthesis, Metalation with Pd(II) and in vitro Pharmacological Evaluation. RSC Adv. 2015, 5, 68260-68269. https://doi.org/10.1039/C5RA11083A
https://doi.org/10.1039/C5RA11083A

[32] Ghamari Kargar, P.; Noorian, M.; Chamani, E.; Bagherzade, G.; Kiani, Z. Synthesis, Characterization and Cytotoxicity Evalua-tion of a Novel Magnetic Nanocomposite with Iron Oxide Depo-sited on Cellulose Nanofibers with Nickel (Fe3O4@NFC@ONSM-Ni). RSC Adv. 2021, 11, 17413-17430. https://doi.org/10.1039/D1RA01256H
https://doi.org/10.1039/D1RA01256H

[33] Dalla Cort, A.; Mandolini, L.; Pasquini, C.; Schiaffino, L. A Novel Ditopic Zinc-Salophen Macrocycle: A Potential Two-Stationed Wheel for [2]-Pseudorotaxanes. Org. Biomol. Chem. 2006, 4, 4543-4546. https://doi.org/10.1039/B613705A
https://doi.org/10.1039/b613705a

[34] Forte, G.; Maglione, M.S.; Tulli, L.G.; Fantoni, A.; Dalla Cort, A. A Newly Designed Water Soluble Uranyl-Salophen Complex for Anion Recognition. ChemistryOpen 2021, 10, 848-851. https://doi.org/10.1002/open.202100182
https://doi.org/10.1002/open.202100182

[35] Ho, C.-Y. Cyanative Alkene-Aldehyde Coupling: Ni(0)-NHC-Et2AlCN Mediated Chromanols Synthesis with High cis-Selectivity at Room Temperature. Chem. Commun. 2010, 46, 466-468. https://doi.org/10.1039/B918626C
https://doi.org/10.1039/B918626C

[36] Kazemnejadi, M.; Shakeri, A.; Mohammadi, M.; Tabefam, M. Direct Preparation of Oximes and Schiff Bases by Oxidation of Primary Benzylic or Allylic Alcohols in the Presence of Primary Amines Using Mn(III) Complex of Polysalicylaldehyde as an Efficient and Selective Heterogeneous Catalyst by Molecular Oxygen. J. Iran. Chem. Soc. 2017, 14, 1917-1933. https://doi.org/10.1007/s13738-017-1131-z
https://doi.org/10.1007/s13738-017-1131-z

[37] Coppola, G. M. Amberlyst-15, a Superior Acid Catalyst for the Cleavage of Acetals. Synthesis 1984, 1984, 1021-1023. https://doi.org/10.1055/s-1984-31059
https://doi.org/10.1055/s-1984-31059

[38] Meléndez, J.; North, M.; Villuendas, P. One-Component Catalysts for Cyclic Carbonate Synthesis. Chem. Commun. 2009, 2009, 2577-2579. https://doi.org/10.1039/B900180H
https://doi.org/10.1039/b900180h

[39] Wei, X.; Li, J.; Zhou, B.; Qin, S. Synthesis, Oxygenation and Catalytic Epoxidation Performance of Salen and Salophen Transi-tion-Metal Complexes with Aza-Crown or Morpholino Pendants. Transition Met. Chem. 2004, 29, 457-462. https://doi.org/10.1023/B:TMCH.0000027463.00158.6b
https://doi.org/10.1023/B:TMCH.0000027463.00158.6b

[40] Bagherzadeh, M.; Zare, M. Synthesis, Characterization and Catalysis of Recyclable New Piperazine-Bridged Mo(VI) Polymers [MoO2(Salen) (Piperazine)]n in Highly Selective Oxygenation of Alkenes and Sulfides. J. Coord. Chem. 2013, 66, 2885-2900. https://doi.org/10.1080/00958972.2013.818671
https://doi.org/10.1080/00958972.2013.818671

[41] Docherty, K.M.; Kulpa, Jr., C.F. Toxicity and Antimicrobial Activity of Imidazolium and Pyridinium Ionic Liquids. Green Chem. 2005, 7, 185-189. https://doi.org/10.1039/B419172B
https://doi.org/10.1039/b419172b

[42] Modak, R.; Mondal, B.; Howlader, P.; Mukherjee, P.S. Self-Assembly of a "Cationic-Cage": Via the Formation of Ag-Carbene Bonds Followed by Imine Condensation. Chem. Commun. 2019, 55, 6711-6714. https://doi.org/10.1039/C9CC02341K
https://doi.org/10.1039/C9CC02341K

[43] Boldescu, V.; Sucman, N.; Hassan, S.; Iqbal, J.; Neamtu, M.; Lecka, J.; Sévigny, J.; Prodius, D.; Macaev, F. Ectonucleotidase Inhibitory and Redox Activity of Imidazole-Based Organic Salts and Ionic Liquids. ChemMedChem, 2018, 13, 2297-2304. https://doi.org/10.1002/cmdc.201800520
https://doi.org/10.1002/cmdc.201800520

[44] Lecarme, L.; Prado, E.; De Rache, A.; Nicolau-Travers, M.-L.; Bonnet, R.; van der Heyden, A.; Philouze, C.; Gomez, D.; Mergny, J.-L.; Jamet, H.; et al. Interaction of Polycationic Ni(II)-Salophen Complexes with G-Quadruplex DNA. Inorg. Chem. 2014, 53, 12519-12531. https://doi.org/10.1021/ic502063r
https://doi.org/10.1021/ic502063r

[45] Elshaarawy, R.F.M.; Tadros, H.R.Z.; Abd El-Aal, R.M.; Mustafa, F.H.A.; Soliman, Y.A.; Hamed, M.A. Hybrid Molecules Comprising 1,2,4-Triazole or Diaminothiadiazole Schiff-Bases and Ionic Liquid Moieties as Potent Antibacterial and Marine Antibio-fouling Nominees. J. Environ. Chem. Eng. 2016, 4, 2754-2764. https://doi.org/10.1016/j.jece.2016.05.016
https://doi.org/10.1016/j.jece.2016.05.016

[46] Neto, Í.; Andrade, J.; Fernandes, A.S.; Pinto Reis, C.; Salunke, J.K.; Priimagi, A.; Candeias, N.R.; Rijo, P. Multicomponent Petasis-Borono Mannich Preparation of Alkylaminophenols and Antimicrobial Activity Studies. ChemMedChem 2016, 11, 2015-2023. https://doi.org/10.1002/cmdc.201600244
https://doi.org/10.1002/cmdc.201600244

[47] Doan, P.; Karjalainen, A.; Chandraseelan, J.G.; Sandberg, O.; Yli-Harja, O.; Rosholm, T.; Franzen, R.; Kandhavelu, M. Synthesis and Biological Screening for Cytotoxic Activity of N-Substituted Indolines and Morpholines. Eur. J. Med. Chem. 2016, 120, 296-303. https://doi.org/10.1016/j.ejmech.2016.05.024
https://doi.org/10.1016/j.ejmech.2016.05.024

[48] Wang, Q.; Finn, M. G. 2H-Chromenes from Salicylaldehydes by a Catalytic Petasis Reaction. Org. Lett. 2000, 2, 4063-4065. https://doi.org/10.1021/ol006710r
https://doi.org/10.1021/ol006710r

[49] Paizs, C.; Toşa, M.; Majdik, C.; Moldovan, P.; Novák, L.; Kolonits, P.; Marcovici, A.; Irimie, F.-D.; Poppe, L. Optically Active 1-(Benzofuran-2-yl)ethanols and Ethane-1,2-diols by Enantiotopic Selective Bioreductions. Tetrahedron Asymmetry 2003, 14, 1495-1501. https://doi.org/10.1016/S0957-4166(03)00222-2
https://doi.org/10.1016/S0957-4166(03)00222-2

[50] Alizadeh, A.; Ghanbaripour, R. An Efficient Synthesis of Pyrrolo[2,1-a]isoquinoline Derivatives Containing Coumarin Skeletons via a One-Pot, Three-Component Reaction. Res. Chem. Intermed. 2015, 41, 8785-8796. https://doi.org/10.1007/s11164-015-1928-2
https://doi.org/10.1007/s11164-015-1928-2

[51] Villa-Martínez, C.A.; Magaña-Vergara, N.E.; Rodríguez, M.; Mojica-Sánchez, J.P.; Ramos-Organillo, Á.A.; Barroso-Flores, J.; Padilla-Martinez, I.I.; Martínez-Martínez, F.J. Synthesis, Optical Characterization in Solution and Solid-State, and DFT Calculations of 3-Acetyl and 3-(1′-(2′-Phenylhydrazono)ethyl)-coumarin-(7)-substituted Derivatives. Molecules 2022, 27, 3677. https://doi.org/10.3390/molecules27123677
https://doi.org/10.3390/molecules27123677