Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Огляд методів модифікування дорожніх бітумів. Частина 1 – фізичне модифікування

Volodymyr Gunka1, Olena Astakhova1, Yurii Hrynchuk1, Iurii Sidun1, Volodymyr Reutskyy1, Iryna Mirchuk2, Olha Poliak1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., 79013 Lviv, Ukraine 2 National Transport University, 1 Mykhailа Omelianovycha-Pavlenka St., 01010 Kyiv, Ukraine volodymyr.m.hunka@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.02.295
AttachmentSize
PDF icon full_text.pdf330.95 KB
Abstract: 
Інформація в цьому дослідженні була зібрана на основі ретельного огляду останніх статей, пов’язаних із одержанням в’яжучих матеріалів для дорожнього будівництва і покращенням їхніх експлуатаційних властивостей. Зосереджено увагу на фізичному модифікуванні дорожніх бітумів полімерними модифікаторами. Показано вплив трьох основних типів полімерів (термопластів, еластопластів і термоеластопластів) на основні фізико-механічні властивості бітум-полімерних композицій. Встановлено основні технологічні параметри й особливості фізичного модифікування бітумів різними типами полімерних модифікаторів.
References: 

[1] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274–283. https://doi.org/10.23939/chcht15.02.274
[2] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443–449. https://doi.org/10.23939/chcht15.03.443
[3] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608–620. https://doi.org/10.23939/chcht15.04.608
[4] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
[5] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295–302. https://doi.org/10.23939/chcht16.02.295
[6] Gunka, V.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Prysiazhnyi, Yu.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475–483. https://doi.org/10.23939/chcht16.03.475
[7] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211–220. https://doi.org/10.23939/chcht17.01.211
[8] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701–710. https://doi.org/10.23939/chcht17.03.701
[9] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916–622. https://doi.org/10.23939/chcht17.04.916
[10] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688–700. https://doi.org/10.23939/chcht17.03.688
[11] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438–442. https://doi.org/10.23939/chcht15.03.438
[12] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54–62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
[13] Asphalt Institute; European Bitumen Association. The bitumen industry – a global perspective: production, chemistry, use, specification, and occupational exposure. Third edition; Asphalt Institute; Eurobitume: Lexigton, KY, Brussels, Belgium, 2015.
[14] Revuelta, M. B. Construction Materials: Geology, Production and Applications; Springer Nature: Switzerland, 2021. https://doi.org/10.1007/978-3-030-65207-4
[15] Nivitha, M. R.; Roy, N.; Murali Krishnan, J. Influence of Refinery Processing Methods on Ageing of Bitumen. Sādhanā 2019, 44, 128. https://doi.org/10.1007/s12046-019-1107-z
[16] Park, J. H.; Son, S. H. Extraction of Bitumen with Sub- and Supercritical Water. Korean J Chem Eng. 2011, 28, 455–460. https://doi.org/10.1007/s11814-010-0358-5
[17] Zachariah, A.; de Klerk, A. Partial Upgrading of Bitumen: Impact of Solvent Deasphalting and Visbreaking Sequence. Energy Fuels 2017, 31, 9374–9380. https://doi.org/10.1021/acs.energyfuels.7b02004
[18] Błażejowski, K.; Wójcik-Wiśniewska, M. Bitumen Handbook; ORLEN Asfalt: Plock, Poland, 2017.
[19] Eurobitume. Physical differentiation between air-rectified and oxidised bitumens. 2011. http://www.materialedge.co.uk/docs/Differentiating-air-rectified-and-oxi...
[20] Mousavi, M.; Pahlavan, F.; Oldham, D.; Hosseinnezhad, S.; Fini, E. H. Multiscale Investigation of Oxidative Aging in Biomodified Asphalt Binder. J. Phys. Chem. C 2016, 120, 17224–17233. https://doi.org/10.1021/acs.jpcc.6b05004
[21] Oldham, D.; Qu, X.; Wang, H.; Fini, E. H. Investigating Change of Polydispersity and Rheology of Crude Oil and Bitumen Due to Asphaltene Oxidation. Energy Fuels 2020, 34, 10299–10305. https://doi.org/10.1021/acs.energyfuels.0c01344
[22] Biturox. https://www.biturox.com
[23] Nivitha, M. R.; Devika, R.; Murali Krishnan, J.; Roy, N. Influence of Bitumen Type and Polymer Dosage on the Relaxation Spectrum of Styrene-Butadiene-Styrene (SBS)/Styrene-Butadiene (SB) Modified Bitumen. Mech Time Depend Mater 2023, 27, 27–98. https://doi.org/10.1007/s11043-021-09531-y
[24] Adiko, S. B.; Gureev, A. A.; Khasanova, N. M.; Sakharov, B. V. Processing of High-Paraffinic vacuum residues by thermocatalytic methods to obtain bitumen. Constr Build Mater. 2021, 285, 122880. https://doi.org/10.1016/j.conbuildmat.2021.122880
[25] Kamelia, L.; Rietjens, I. M.; Boogaard, P. J. Developmental Toxicity Testing of the Fume Condensate Extracts of Bitumen and Oxidized Asphalt in a Series of in vitro Alternative Assays. Toxicol in Vitro 2021, 75, 105195. https://doi.org/10.1016/j.tiv.2021.105195
[26] Zhang, Z.; Fang, Y.; Yang, J.; Li, X. A Comprehensive Review of Bio-Oil, Bio-Binder and Bio-Asphalt Materials: Their Source, Composition, Preparation and Performance. J. Traffic Transp. Eng. 2022. 9, 151–166. https://doi.org/10.1016/j.jtte.2022.01.003
[27] Zhang, Y.; Liu, X.; Apostolidis, P.; Gard, W.; van de Ven, M.; Erkens, S.; Jing, R. Chemical and Rheological Evaluation of Aged Lignin-Modified Bitumen. Materials 2018, 12, 4176. https://doi.org/10.3390/ma12244176
[28] Al-Otoom, A.; Al-Harahsheh, M.; Allawzi, M.; Kingman, S.; Robinson, J.; Al-Harahsheh, A.; Saeid, A. Physical and Thermal Properties of Jordanian Tar Sand. Fuel Process. Technol. 2013, 106, 174–180. https://doi.org/10.1016/j.fuproc.2012.07.021
[29] Anupam, K.; Akinmade, D.; Kasbergen, C.; Erkens, S.; Adebiyi, F. A state-of-the-Art Review of Natural Bitumen in Pavement: Underlining Challenges and the Way Forward. J. Clean. Prod. 2022, 382, 134957. https://doi.org/10.1016/j.jclepro.2022.134957
[30] Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. https://doi.org/10.3390/app9040742
[31] Pyshyev, S., Gunka, V., Grytsenko, Y., Bratychak, M. Polymer Modified Bitumen. Chem. Chem. Technol. 2016, 10, 631–636. https://doi.org/10.23939/chcht10.04si.631
[32] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111–118. https://doi.org/10.1007/978-3-030-27011-7_14
[33] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
[34] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M.; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
[35] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199–1206.
[36] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95–102. https://doi.org/10.1007/978-3-030-57340-9_12
[37] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
[38] Donchenko, M.; Grynyshyn, O.; Demchuk, Yu.; Topilnytskyy, P.; Turba, Yu. Influence of Potassium Humate on the Technological Aging Processes of Oxidized Petroleum Bitumen. Chem. Chem. Technol. 2023, 17, 681–687. https://doi.org/10.23939/chcht17.03.681
[39] Gunka, V., Hidei, V., Sidun, I., Demchuk, Y., Stadnik, V., Shapoval, P., Sobol, Kh.; Vytrykush, N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
[40] Leal Filho, W.; Saari, U.; Fedoruk, M.; Iital, A.; Moora, H.; Klöga, M.; Voronova, V. An Overview of the Problems Posed by Plastic Products and the Role of Extended Producer Responsibility in Europe. J. Clean. Prod. 2019, 214, 550–558. https://doi.org/10.1016/j.jclepro.2018.12.256
[41] Wu, S.; Montalvo, L. Repurposing Waste Plastics into Cleaner Asphalt Pavement Materials: A Critical Literature Review. J. Clean. Prod. 2021, 280, 124355. https://doi.org/10.1016/j.jclepro.2020.124355
[42] He, P.; Chen, L.; Shao, L.; Zhang, H.; Lü, F. Municipal Solid Waste (MSW) Landfill: A Source of Microplastics?-Evidence of Microplastics in Landfill Leachate. Water Res. 2019, 159, 38–45. https://doi.org/10.1016/j.watres.2019.04.060
[43] Ge, D.; Yan, K.; You, Z.; Xu, H. Modification Mechanism of Asphalt Binder with Waste Tire Rubber and Recycled Polyethylene. Constr Build Mater. 2016, 126, 66–76. https://doi.org/10.1016/j.conbuildmat.2016.09.014
[44] Joohari, I. B.; Maniam, S.; Giustozzi, F. Influence of Compatibilizers on the Storage Stability of Hybrid Polymer-Modified Bitumen with Recycled Polyethylene. In Plastic Waste for Sustainable Asphalt Roads; Giustozzi, F.; Nizamuddin, S., Eds.; Woodhead Publishing, 2022; pp 215–232. https://doi.org/10.1016/B978-0-323-85789-5.00011-3
[45] Kishchynskyi, S.; Nagaychuk, V.; Bezuglyi, A. Improving Quality and Durability of Bitumen and Asphalt Concrete by Modification Using Recycled Polyethylene Based Polymer Composition. Procedia engineering 2016, 143, 119–127. https://doi.org/10.1016/j.proeng.2016.06.016
[46] Nizamuddin, S.; Jamal, M.; Gravina, R.; Giustozzi, F. Recycled Plastic as Bitumen Modifier: The Role of Recycled Linear Low-Density Polyethylene in the Modification of Physical, Chemical and Rheological Properties of Bitumen. J. Clean. Prod. 2020, 266, 121988. https://doi.org/10.1016/j.jclepro.2020.121988
[47] Xu, F.; Zhao, Y.; Li, K. Using Waste Plastics as Asphalt Modifier: A Review. Materials 2022, 15, 110. https://doi.org/10.3390/ma15010110
[48] Appiah, J. K.; Berko-Boateng, V. N.; Tagbor, T. A. Use of Waste Plastic Materials for Road Construction in Ghana. Case Stud. Constr. Mater. 2017, 6, 1–7. https://doi.org/10.1016/j.cscm.2016.11.001
[49] Brasileiro, L.; Moreno-Navarro, F.; Tauste-Martínez, R.; Matos, J.; Rubio-Gámez, M. D. C. Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability 2019, 11, 646. https://doi.org/10.3390/su11030646
[50] Hariadi, D.; Saleh, S. M.; Yamin, R. A.; Aprilia, S. Utilization of LDPE Plastic Waste on the Quality of Pyrolysis Oil as an Asphalt Solvent Alternative. Therm. Sci. Eng. Prog. 2021, 23, 100872. https://doi.org/10.1016/j.tsep.2021.100872
[51] Ahmedzade, P.; Demirelli, K.; Günay, T.; Biryan, F.; Alqudah, O. Effects of Waste Polypropylene Additive on the Properties of Bituminous Binder. Procedia Manuf. 2015, 2, 165–170. https://doi.org/10.1016/j.promfg.2015.07.029
[52] Razali, M. N.; Aziz, M. A. A.; Jamin, N. F. M.; Salehan, N. A. M. Modification of Bitumen Using Polyacrylic Wig Waste. AIP Conf. Proc. 2018, 1930, 020051. https://doi.org/10.1063/1.5022945
[53] Behl, A.; Sharma, G.; Kumar, G. A Sustainable Approach: Utilization of Waste PVC in Asphalting of Roads. Constr Build Mater. 2014, 54, 113–117. https://doi.org/10.1016/j.conbuildmat.2013.12.050
[54] Lugeiyamu, L.; Kunlin, M.; Mensahn, E. S.; Faraz, A. Utilization of Waste Polyethylene Terephthalate (PET) as Partial Replacement of Bitumen in Stone Mastic Asphalt. Constr Build Mater. 2021, 309, 125176. https://doi.org/10.1016/j.conbuildmat.2021.125176
[55] Vila-Cortavitarte, M.; Lastra-González, P.; Calzada-Pérez, M. Á.; Indacoechea-Vega, I. Analysis of the Influence of Using Recycled Polystyrene as a Substitute for Bitumen in the Behaviour of Asphalt Concrete Mixtures. J. Clean. Prod. 2018, 170, 1279–1287. https://doi.org/10.1016/j.jclepro.2017.09.232
[56] Costa, L. M.; Silva, H. M.; Peralta, J.; Oliveira, J. R. Using Waste Polymers as a Reliable Alternative for Asphalt Binder Modification – Performance and Morphological Assessment. Constr Build Mater. 2019, 198, 237–244. https://doi.org/10.1016/j.conbuildmat.2018.11.279
[57] Shahane, H. A.; Bhosale, S. S. E-Waste Plastic Powder Modified Bitumen: Rheological Properties and Performance Study of Bituminous Concrete. Road Mater. Pavement Des. 2021, 22, 682-702. https://doi.org/10.1080/14680629.2019.1642944
[58] Bazmara, B.; Tahersima, M.; Behravan, A. Influence of Thermoplastic Polyurethane and Synthesized Polyurethane Additive in Performance of Asphalt Pavements. Constr Build Mater. 2018, 166, 1–11. https://doi.org/10.1016/j.conbuildmat.2018.01.093
[59] Roman, C.; Cuadri, A. A.; Liashenko, I.; García-Morales, M.; Partal, P. Linear and Non-Linear Viscoelastic Behavior of SBS and LDPE Modified Bituminous Mastics. Constr Build Mater. 2016, 123, 464–472. https://doi.org/10.1016/j.conbuildmat.2016.07.027
[60] Li, M.; Zhang, M.; Rong, H.; Zhang, X.; He, L.; Han, P.; Tong, M. Transport and Deposition of Plastic Particles in Porous Media during Seawater Intrusion and Groundwater-Seawater Displacement Processes. Sci. Total Environ. 2021, 781, 146752. https://doi.org/10.1016/j.scitotenv.2021.146752
[61] Movilla-Quesada, D.; Raposeiras, A. C.; Silva-Klein, L. T.; Lastra-González, P.; Castro-Fresno, D. Use of Plastic Scrap in Asphalt Mixtures Added by Dry Method as a Partial Substitute for Bitumen. Waste Manage. 2019, 87, 751–760. https://doi.org/10.1016/j.wasman.2019.03.018
[62] Nizamuddin, S.; Boom, Y. J.; Giustozzi, F. Sustainable Polymers from Recycled Waste Plastics and their Virgin Counterparts as Bitumen Modifiers: A Comprehensive Review. Polymers 2021, 13, 3242. https://doi.org/10.3390/polym13193242
[63] Mashaan, N. S.; Chegenizadeh, A.; Nikraz, H.; Rezagholilou, A. Investigating the Engineering Properties of Asphalt Binder Modified with Waste Plastic Polymer. Ain Shams Eng. J. 2021, 12, 1569–1574. https://doi.org/10.1016/j.asej.2020.08.035
[64] Costa, L. M.; Silva, H. M. R. D.; Oliveira, J. R.; Fernandes, S. R. Incorporation of Waste Plastic in Asphalt Binders to Improve their Performance in the Pavement. Int. J. Pavement Res. Technol. 2013, 6, 457–464. https://doi.org/10.6135/ijprt.org.tw/2013.6(4).457
[65] Grynyshyn, O.; Astakhova, O.; Chervinskyy, T. Production of Bitumen Modified by Petroleum Resins on the Basis of Tars of Ukrainian Oils. Chem. Chem. Technol. 2010, 4, 241–246. https://doi.org/10.23939/chcht04.03.241
[66] Grynyshyn, O.; Bratychak, M.; Krynytskiy, V.; Donchak, V. Petroleum Resins for Bitumens Modification. Chem. Chem. Technol. 2008, 2, 47–53. https://doi.org/10.23939/chcht02.01.047
[67] Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Shved, M.; Kochubei, V. Oil and Gas Processing Products to Obtain Polymers Modified Bitumen. Int. J. Pavement Res. Technol. 2017, 10, 289–296. https://doi.org/10.1016/j.ijprt.2017.05.001
[68] Pyshyev, S.; Prysiazhnyi, Y.; Gunka, V.; Reutskyy, V.; Bannikov, L. Modification of Petroleum Bitumen by Resins Obtained from Liquid Products of Coal Coking: Composition, Properties, and Application. Notice 1: Research of Raw Material Composition and Resin Synthesis. Pet. Coal 2022, 64, 106–119.
[69] Vargas, C.; El Hanandeh, A. Systematic Literature Review, Meta-Analysis and Artificial Neural Network Modelling of Plastic Waste Addition to Bitumen. J. Clean. Prod. 2021, 280, 124369. https://doi.org/10.1016/j.jclepro.2020.124369
[70] Binti Joohari, I.; Giustozzi, F. Hybrid Polymerisation: An Exploratory Study of the Chemo-Mechanical and Rheological Properties of Hybrid-Modified Bitumen. Polymers 2020, 12, 945. https://doi.org/10.3390/polym12040945
[71] Yan, K.; Chen, J.; You, L.; Tian, S. Characteristics of Compound Asphalt Modified by Waste Tire Rubber (WTR) and Ethylene Vinyl Acetate (EVA): Conventional, Rheological, and Microstructural Properties. J. Clean. Prod. 2020, 258, 120732. https://doi.org/10.1016/j.jclepro.2020.120732
[72] Zhang, F., Hu, C. The Research for Crumb Rubber/Waste Plastic Compound Modified Asphalt. J. Therm. Anal. Calorim. 2016, 124, 729–741. https://doi.org/10.1007/s10973-015-5198-4
[73] Brovelli, C.; Crispino, M.; Pais, J.; Pereira, P. Using Polymers to Improve the Rutting Resistance of Asphalt Concrete. Constr Build Mater. 2015, 77, 117–123. https://doi.org/10.1016/j.conbuildmat.2014.12.060
[74] Formela, K.; Sulkowski, M.; Saeb, M. R.; Colom, X.; Haponiuk, J. T. Assessment of Microstructure, Physical and Thermal Properties of Bitumen Modified with LDPE/GTR/Elastomer Ternary Blends. Constr Build Mater. 2016, 106, 160–167. https://doi.org/10.1016/j.conbuildmat.2015.12.108
[75] Nasr, D.; Pakshir, A. H. Rheology and Storage Stability of Modified Binders with Waste Polymers Composites. Road Mater. Pavement Des. 2019, 20, 773–792. https://doi.org/10.1080/14680629.2017.1417152
[76] Al-Abdul Wahhab, H. I.; Dalhat, M. A.; Habib, M. A. Storage Stability and High-Temperature Performance of Asphalt Binder Modified with Recycled Plastic. Road Mater. Pavement Des. 2017, 18, 1117–1134. https://doi.org/10.1080/14680629.2016.1207554
[77] Ansari, A. H.; Jakarni, F. M.; Muniandy, R.; Hassim, S.; Elahi, Z. Natural Rubber as a Renewable and Sustainable Bio-Modifier for Pavement Applications: A Review. J. Clean. Prod. 2021, 289, 125727. https://doi.org/10.1016/j.jclepro.2020.125727
[78] Ibrahim, S.; Daik, R.; Abdullah, I. Functionalization of Liquid Natural Rubber via Oxidative Degradation of Natural Rubber. Polymers 2014, 6, 2928–2941. https://doi.org/10.3390/polym6122928
[79] Poovaneshvaran, S.; Hasan, M. R. M.; Jaya, R. P. Impacts of Recycled Crumb Rubber Powder and Natural Rubber Latex on the Modified Asphalt Rheological Behaviour, Bonding, and Resistance to Shear. Constr Build Mater. 2020, 234, 117357. https://doi.org/10.1016/j.conbuildmat.2019.117357
[80] Saowapark, W.; Jubsilp, C.; Rimdusit, S. Natural Rubber Latex-Modified Asphalts for Pavement Application: Effects of Phosphoric Acid and Sulphur Addition. Road Mater. Pavement Des. 2019, 20, 211–224. https://doi.org/10.1080/14680629.2017.1378117
[81] Al-Sabaeei, A. M.; Agus Mustofa, B.; Sutanto, M. H.; Sunarjono, S.; Bala, N. Aging and Rheological Properties of Latex and Crumb Rubber Modified Bitumen Using Dynamic Shear Rheometer. J. Eng. Technol. Sci. 2020, 52, 385–398. https://doi.org/10.5614/j.eng.technol.sci.2020.52.3.6
[82] Azahar, N. M.; Hassan, N. A.; Jaya, R. P.; Hainin, M. R.; Yusoff, N. I. M.; Kamaruddin, N. H. M.; Yaacob, H. Properties of Cup Lump Rubber Modified Asphalt Binder. Road Mater. Pavement Des. 2021, 22, 1329–1349. https://doi.org/10.1080/14680629.2019.1687007
[83] Shaffie, E.; Arshad, A. K.; Alisibramulisi, A.; Ahmad, J.; Hashim, W.; Abd Rahman, Z.; Jaya, R. P. Effect of Mixing Variables on Physical Properties of Modified Bitumen Using Natural Rubber Latex. Int. J. Civ. Eng. Technol. 2018, 9, 1812–1821.
[84] Bindu, C. S.; Joseph, M. S.; Sibinesh, P. S.; George, S.; Sivan, S. Performance Evaluation of Warm Mix Asphalt Using Natural Rubber Modified Bitumen and Cashew Nut Shell Liquid. Int. J. Pavement Res. Technol. 2020, 13, 442–453.
[85] Wen, Y., Wang, Y., Zhao, K., Sumalee, A. The Use of Natural Rubber Latex as a Renewable and Sustainable Modifier of Asphalt Binder. Int. J. Pavement Eng. 2017, 18, 547–559. https://doi.org/10.1080/10298436.2015.1095913
[86] Shafii, M.; Ahmad, J.; Shaffie, E. Physical Properties of Asphalt Emulsion Modified with Natural Rubber Latex. World J. Eng. 2013, 10, 159–164. https://doi.org/10.1260/1708-5284.10.2.159
[87] Yu, X.; Wang, Y.; Luo, Y. Impacts of Water Content on Rheological Properties and Performance-Related Behaviors of Foamed Warm-Mix Asphalt. Constr Build Mater. 2013, 48, 203–209. https://doi.org/10.1016/j.conbuildmat.2013.06.018
[88] Han, Y.; Tian, J.; Ding, J.; Shu, L.; Ni, F. Evaluating the Storage Stability of SBR-Modified Asphalt Binder Containing Polyphosphoric Acid (PPA). Case Stud. Constr. Mater. 2022, 17, e01214. https://doi.org/10.1016/j.cscm.2022.e01214
[89] Kök, B. V.; Çolak, H. Laboratory Comparison of the Crumb-Rubber and SBS Modified Bitumen and Hot Mix Asphalt. Constr Build Mater. 2011, 25, 3204–3212. https://doi.org/10.1016/j.conbuildmat.2011.03.005
[90] Presti, D. L. Recycled Tyre Rubber Modified Bitumens for Road Asphalt Mixtures: A Literature Review. Constr Build Mater. 2013, 49, 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007
[91] Carpani, C.; Bocci, E.; Prosperi, E.; Bocci, M. Evaluation of the Rheological and Performance Behaviour of Bitumen Modified with Compounds Including Crumb Rubber from Waste Tires. Constr Build Mater. 2022, 361, 129679. https://doi.org/10.1016/j.conbuildmat.2022.129679
[92] Qian, C.; Fan, W. Evaluation and Characterization of Properties of Crumb Rubber/SBS Modified Asphalt. Mater. Chem. Phys. 2020, 253, 123319. https://doi.org/10.1016/j.matchemphys.2020.123319
[93] Han, L.; Zheng, M.; Wang, C. Current Status and Development of Terminal Blend Tyre Rubber Modified Asphalt Constr Build Mater. 2016, 128, 399–409. https://doi.org/10.1016/j.conbuildmat.2016.10.080
[94] Bressi, S.; Fiorentini, N.; Huang, J.; Losa, M. Crumb Rubber Modifier in Road Asphalt Pavements: State of the Art and Statistics. Coatings 2019, 9, 384. https://doi.org/10.3390/coatings9060384
[95] Singh, S. K.; Pandey, A.; Ravindranath, S. S. Effect of Additives on the Thermal Stability of SBS Modified Binders during Storage at Elevated Temperatures. Constr Build Mater. 2022, 314, 125609. https://doi.org/10.1016/j.conbuildmat.2021.125609
[96] Kok, B. V.; Yalcin, B. F.; Yilmaz, M.; Yalcin, E. Performance Evaluation of Bitumen Modified with Styrene–Isoprene-Styrene and Crumb Rubber Compound. Constr Build Mater. 2022, 344, 128304. https://doi.org/10.1016/j.conbuildmat.2022.128304
[97] Masson, J. F.; Collins, P.; Robertson, G., Woods, J. R.; Margeson, J. Thermodynamics, Phase Diagrams, and Stability of Bitumen-Polymer Blends. Energy Fuels 2003, 17, 714–724. https://doi.org/10.1021/ef0202687
[98] Chen, M.; Geng, J.; Xia, C.; He, L.; Liu, Z. A Review of Phase Structure of SBS Modified Asphalt: Affecting Factors, Analytical Methods, Phase Models and Improvements. Constr Build Mater. 2021, 294, 123610. https://doi.org/10.1016/j.conbuildmat.2021.123610
[99] Erkuş, Y.; Kök, B. V. Comparison of Physical and Rheological Properties of Calcium Carbonate-Polypropylene Composite and SBS Modified Bitumen. Constr Build Mater. 2023, 366, 130196. https://doi.org/10.1016/j.conbuildmat.2022.130196
[100] De Carcer, Í. A.; Masegosa, R. M.; Viñas, M. T.; Sanchez-Cabezudo, M.; Salom, C.; Prolongo, M. G.; Páez, A. Storage Stability of SBS/Sulfur Modified Bitumens at High Temperature: Influence of Bitumen Composition and Structure. Constr Build Mater. 2014, 52, 245–252. https://doi.org/10.1016/j.conbuildmat.2013.10.069
[101] Lu, X.; Isacsson, U. Compatibility and Storage Stability of Styrene-Butadiene-Styrene Copolymer Modified Bitumens. Mater Struct. 1997, 30, 618–626. https://doi.org/10.1007/BF02486904