Одержання бітуму, модифікованого низькомолекулярними органічними сполуками із нафтових залишків. 6. Вплив температури на процес хімічного модифікування бітумів малеїновим ангідридом

Volodymyr Gunka1, Yurii Hrynchuk1, Iurii Sidun1, Yuriy Demchuk 1, Yuriy Prysiazhnyi1, Michael Bratychak1
Affiliation: 
1 Lviv Polytechnic National University 12 S.Bandery St., Lviv 79013, Ukraine mbratychak@gmail.com
DOI: 
https://doi.org/10.23939/chcht16.03.475
AttachmentSize
PDF icon full_text.pdf1.13 MB
Abstract: 
Проведено процес хімічного модифікування окисненого бітуму виробленого на українському нафтопереробному заводі малеїновим ангідридом. Доведено, що найбільш суттєво впливає на модифікування - температура процесу. Підтверджено, що в процесі модифікування малеїновий ангідрид хімічно взаємодіє із складовими частинами окисненого бітуму. Показано, що за нижчих температур (до 403 К) процес модифікування відбувається за іншим хімізмом ніж за вищих температур. Проведено FTIR спектральні дослідження для бітумів модифікованих малеїновим ангідридом за різних температур процесу (403, 423 та 443 К) та встановлено структури цих модифікованих бітумів. Також проведено процес прогріття в тонкій плівці за 436 К (методом RTFOT) для бітумів модифікованих малеїновим ангідридом при різних температурах. Встановлено, що для бітуму модифікованого малеїновим ангідридом за 403 К після прогріття за методом RTFOT відбувається руйнування утвореної структури, що підтверджується зменшенням температури розм’якшення модифікованого бітуму. Також знято FTIR спектри вихідного окисненого бітуму та бітумів модифікованих малеїновим ангідридом за 403 і 443 К після процесу прогріття за методом RTFOT. На основі одержаних FTIR спектрів встановлено структурні перетворення, що відбуваються в процесі прогріття з цими бітумами.
References: 

[1] Zhu, J.; Birgisson, B.; Kringos, N. Polymer Modification of Bitumen: Advances and Challenges. Eur. Polym. J. 2014, 54. 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005
[2] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruction of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14 (2), 264-270. https://doi.org/10.23939/chcht14.02.264
[3] Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 2 (6), 219-223. https://doi.org/10.23939/chcht06.02.219
[4] Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt Modification with Different Polyethylene-Based Polymers. Eur. Polym. J. 2005, 41, 2831-2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034
[5] Giavarini, C.; De Filippis, P.; Santarelli, M.L.; Scarsella, M. Production of Stable Polypropylene-Modified Bitumens. Fuel 1996, 75, 681-686. https://doi.org/10.1016/0016-2361(95)00312-6
[6] Abdel-Goad, M.A.H. Waste Polyvinyl Chloride-Modified Bitumen. J. Appl. Polym. Sci. 2006, 101(3), 1501-1505. https://doi.org/10.1002/app.22623
[7] Padhan, R.K.; Sreeram, A.; Mohanta, C.S. Chemically Recycled Polyvinyl Chloride as a Bitumen Modifier: Synthesis, Characterisation and Performance evaluation. Road Mater. Pavement Des. 2021, 22(3), 639-652. https://doi.org/10.1080/14680629.2019.1614968
[8] Lu, X.; Isacsson, U. Modification of Road Bitumens with Thermoplastic Polymers. Polym. Test. 2000, 20(1), 77-86. https://doi.org/10.1016/S0142-9418(00)00004-0
[9] Becker, M.Y.; Muller, A.J.; Rodriguez, Y. Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts. J. Appl. Polym. Sci. 2003, 90, 1772-1782. https://doi.org/10.1002/app.12764
[10] Jasso, M.; Hampl, R.; Vacin, O.; Bakos, D.; Stastna, J.; Zanzotto, L. Rheology of Conventional Asphalt Modified with SBS, Elvaloy and Polyphosphoric acid. Fuel Process. Technol. 2015, 140, 172-179. https://doi.org/10.1016/j.fuproc.2015.09.002
[11] Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory Investigation on the Properties of Polyurethane/Unsaturated Polyester Resin Modified Bituminous Mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865
[12] Gunka, V.; Demchuk, Yu.; Pyshyev, S.; Starovoit, A.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60 (6), 1199-1206.
[13] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12 (4), 456-461. https://doi.org/10.23939/chcht12.04.456
[14] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13 (2), 212-217. https://doi.org/10.23939/chcht13.02.212
[15] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14 (2), 251-256. https://doi.org/10.23939/chcht14.02.251
[16] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22 (12), 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
[17] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95-102 https://doi.org/10.1007/978-3-030-57340-9_1
[18] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J. Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
[19] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and Their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
[20] Bratychak, M.; Grynyshyn, O.; Astakhova, O.; Shyshchak, O.; Wacławek, W. Functional Petroleum Resins Based on Pyrolysis By-Products and Their Application for Bitumen Modification. Ecol. Chem. Eng. 2010, 17, 309-315.
[21] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62 (1), 420-429.
[22] Bratychak, M.; Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15 (2), 274-283. https://doi.org/10.23939/chcht15.02.274
[23] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15 (3), 443-449. https://doi.org/10.23939/chcht15.03.443
[24] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15 (4), 608-620. https://doi.org/10.23939/chcht15.04.608
[25] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16 (1), 142-149. https://doi.org/10.23939/chcht16.01.142
[26] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use Of Maleic Anhydride For Foaming Bitumens. Chem. Chem. Technol. 2022, 16 (2), 295-302. https://doi.org/10.23939/chcht16.02.295
[27] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15(5), 1774. https://doi.org/10.3390/ma15051774
[28] Herrington, P.R.; Wu, Y.; Forbes, M.C. Rheological Modification of Bitumen with Maleic Anhydride and Dicarboxylic Acids. Fuel 1999, 78 (1), 101-110. https://doi.org/10.1016/S0016-2361(98)00120-3
[29] Kang, Y.; Wang, F.; Chen, Z. Reaction of Asphalt and Maleic Anhydride: Kinetics and Mechanism. Chem. Eng. J. 2010, 164 (1), 230-237. https://doi.org/10.1016/j.cej.2010.08.020
[30] BS EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
[31] BS EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
[32] BS EN 12593:2015, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015
[33] BS EN 13587:2016, Bitumen and bituminous binders. Determination of the tensile properties of bituminous binders by the tensile test method, 2016.
[34] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018.
[35] BS EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air RTFOT method, 2014.