Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature Effect on the Chemical Modification of Bitumen with Maleic Anhydride
Attachment | Size |
---|---|
full_text.pdf | 1.13 MB |
[1] Zhu, J.; Birgisson, B.; Kringos, N. Polymer Modification of Bitumen: Advances and Challenges. Eur. Polym. J. 2014, 54. 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005
https://doi.org/10.1016/j.eurpolymj.2014.02.005
[2] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruction of Various Microorganisms under Cavitation Action. Chem. Chem. Technol. 2020, 14 (2), 264-270. https://doi.org/10.23939/chcht14.02.264
https://doi.org/10.23939/chcht14.02.264
[3] Shevchuk, L.; Strogan, O.; Koval, I. Equipment for Magnetic-Cavity Water Disinfection. Chem. Chem. Technol. 2012, 2 (6), 219-223. https://doi.org/10.23939/chcht06.02.219
https://doi.org/10.23939/chcht06.02.219
[4] Polacco, G.; Berlincioni, S.; Biondi, D.; Stastna, J.; Zanzotto, L. Asphalt Modification with Different Polyethylene-Based Polymers. Eur. Polym. J. 2005, 41, 2831-2844. https://doi.org/10.1016/j.eurpolymj.2005.05.034
https://doi.org/10.1016/j.eurpolymj.2005.05.034
[5] Giavarini, C.; De Filippis, P.; Santarelli, M.L.; Scarsella, M. Production of Stable Polypropylene-Modified Bitumens. Fuel 1996, 75, 681-686. https://doi.org/10.1016/0016-2361(95)00312-6
https://doi.org/10.1016/0016-2361(95)00312-6
[6] Abdel-Goad, M.A.H. Waste Polyvinyl Chloride-Modified Bitumen. J. Appl. Polym. Sci. 2006, 101(3), 1501-1505. https://doi.org/10.1002/app.22623
https://doi.org/10.1002/app.22623
[7] Padhan, R.K.; Sreeram, A.; Mohanta, C.S. Chemically Recycled Polyvinyl Chloride as a Bitumen Modifier: Synthesis, Characterisation and Performance evaluation. Road Mater. Pavement Des. 2021, 22(3), 639-652. https://doi.org/10.1080/14680629.2019.1614968
https://doi.org/10.1080/14680629.2019.1614968
[8] Lu, X.; Isacsson, U. Modification of Road Bitumens with Thermoplastic Polymers. Polym. Test. 2000, 20(1), 77-86. https://doi.org/10.1016/S0142-9418(00)00004-0
https://doi.org/10.1016/S0142-9418(00)00004-0
[9] Becker, M.Y.; Muller, A.J.; Rodriguez, Y. Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts. J. Appl. Polym. Sci. 2003, 90, 1772-1782. https://doi.org/10.1002/app.12764
https://doi.org/10.1002/app.12764
[10] Jasso, M.; Hampl, R.; Vacin, O.; Bakos, D.; Stastna, J.; Zanzotto, L. Rheology of Conventional Asphalt Modified with SBS, Elvaloy and Polyphosphoric acid. Fuel Process. Technol. 2015, 140, 172-179. https://doi.org/10.1016/j.fuproc.2015.09.002
https://doi.org/10.1016/j.fuproc.2015.09.002
[11] Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory Investigation on the Properties of Polyurethane/Unsaturated Polyester Resin Modified Bituminous Mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865
https://doi.org/10.1016/j.conbuildmat.2020.119865
[12] Gunka, V.; Demchuk, Yu.; Pyshyev, S.; Starovoit, A.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60 (6), 1199-1206.
[13] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12 (4), 456-461. https://doi.org/10.23939/chcht12.04.456
https://doi.org/10.23939/chcht12.04.456
[14] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13 (2), 212-217. https://doi.org/10.23939/chcht13.02.212
https://doi.org/10.23939/chcht13.02.212
[15] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucinska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14 (2), 251-256. https://doi.org/10.23939/chcht14.02.251
https://doi.org/10.23939/chcht14.02.251
[16] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22 (12), 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
https://doi.org/10.1080/14680629.2020.1808518
[17] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95-102 https://doi.org/10.1007/978-3-030-57340-9_1
https://doi.org/10.1007/978-3-030-57340-9_1
[18] Pyshyev, S.; Demchuk, Y.; Poliuzhyn, I.; Kochubei, V. Obtaining and Use Adhesive Promoters to Bitumen from the Phenolic Fraction of Coal Tar. Int. J. Adhes. Adhes. 2022, 118, 103191. https://doi.org/10.1016/j.ijadhadh.2022.103191
https://doi.org/10.1016/j.ijadhadh.2022.103191
[19] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and Their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
https://doi.org/10.23939/chcht07.03.279
[20] Bratychak, M.; Grynyshyn, O.; Astakhova, O.; Shyshchak, O.; Wacławek, W. Functional Petroleum Resins Based on Pyrolysis By-Products and Their Application for Bitumen Modification. Ecol. Chem. Eng. 2010, 17, 309-315.
[21] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved. M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62 (1), 420-429.
[22] Bratychak, M.; Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15 (2), 274-283. https://doi.org/10.23939/chcht15.02.274
https://doi.org/10.23939/chcht15.02.274
[23] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15 (3), 443-449. https://doi.org/10.23939/chcht15.03.443
https://doi.org/10.23939/chcht15.03.443
[24] Gunka, V.; Prysiazhnyi, Yu.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15 (4), 608-620. https://doi.org/10.23939/chcht15.04.608
https://doi.org/10.23939/chcht15.04.608
[25] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16 (1), 142-149. https://doi.org/10.23939/chcht16.01.142
https://doi.org/10.23939/chcht16.01.142
[26] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use Of Maleic Anhydride For Foaming Bitumens. Chem. Chem. Technol. 2022, 16 (2), 295-302. https://doi.org/10.23939/chcht16.02.295
https://doi.org/10.23939/chcht16.02.295
[27] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15(5), 1774. https://doi.org/10.3390/ma15051774
https://doi.org/10.3390/ma15051774
[28] Herrington, P.R.; Wu, Y.; Forbes, M.C. Rheological Modification of Bitumen with Maleic Anhydride and Dicarboxylic Acids. Fuel 1999, 78 (1), 101-110. https://doi.org/10.1016/S0016-2361(98)00120-3
https://doi.org/10.1016/S0016-2361(98)00120-3
[29] Kang, Y.; Wang, F.; Chen, Z. Reaction of Asphalt and Maleic Anhydride: Kinetics and Mechanism. Chem. Eng. J. 2010, 164 (1), 230-237. https://doi.org/10.1016/j.cej.2010.08.020
https://doi.org/10.1016/j.cej.2010.08.020
[30] BS EN 1427:2015, Bitumen and bituminous binders. Determination of the softening point. Ring and Ball method, 2015.
[31] BS EN 1426:2015, Bitumen and bituminous binders. Determination of needle penetration, 2015.
[32] BS EN 12593:2015, Bitumen and bituminous binders. Determination of the Fraass breaking point, 2015
[33] BS EN 13587:2016, Bitumen and bituminous binders. Determination of the tensile properties of bituminous binders by the tensile test method, 2016.
[34] DSTU 8787:2018 (National Standard of Ukraine), Bitumen and bituminous binders. Determination of adhesion with crushed stone, 2018.
[35] BS EN 12607-1:2014, Bitumen and bituminous binders. Determination of the resistance to hardening under influence of heat and air RTFOT method, 2014.