Нові композиційні матеріали на основі природної сировини та силільованого полістирену
Attachment | Size |
---|---|
full_text.pdf | 78.5 KB |
Keywords:
[1] Li, Y. Wood-Polymer Composites. In Advances in Composite Materials - Analysis of Natural and Man-Made Materials; Těšinov, P., Ed.; pp. 229–284. http://dx.doi.org/10.5772/17579
[2] Sheikh, N.; Taromi, F. A. Radiation Induced Polymerization of Vinyl Monomers and their Application for Preparation of Wood-Polymer Composites. Radiat. Phys. Chem. 1993, 42, 179–182. https://doi.org/10.1016/0969-806X(93)90230-R
[3] Elias, H. B.; Numan, S. Properties of Wood–Plastic Composites: Effect of Inorganic Additives. Radiat. Phys. Chem. 2003, 66, 49. https://doi.org/10.1016/S0969-806X(02)00262-1
[4] Schneider, M.H.; Vasic, S.; Lande, S.; Phillips, J.G. Static Bending and Toughness of Wood Polymer Composites (Yellow Birch and Basswood). Wood Sci. Technol. 2003, 37, 165–176. https://doi.org/10.1007/s00226-003-0189-1
[5] Umit, C. Y.; Sibel, Y.; Enqin, D. G. Mechanical Properties and Decay Resistance of Wood–Polymer Composites Prepared from Fast Growing Species in Turkey. Bioresour. Technol. 2005, 96, 1003–1011. https://doi.org/10.1016/j.biortech.2004.09.010
[6] Barton-Pudlik, J.; Czaja, K. Conifer Needles as Thermoplastic Composite Fillers: Structure and Properties. BioResources 2016, 11, 6211–6231. https://doi.org/10.15376/biores.11.3.6211-6231
[7] Wypych, G. PVC degradation & stabilization, 2nd ed.; Chem Tec Publishing: Toronto, 2008.
[8] Taurino, R.; Bondioli, F.; Messori, M. Use of Different Kinds of Waste in the Construction of New Polymer Composites: Review. Mater. Today Sustain. 2023, 21, 100298. https://doi.org/10.1016/j.mtsust.2022.100298
[9] Islam, M.; Kovalcik, A.; Hasan, M.; Thakur, V.K. Natural Fiber Reinforced Polymer Composites. Int. J. Polym. Sci. 2015, 813568. https://doi.org/10.1155/2015/813568
[10] Parameswaranpillai, J.; Gopi, A.J.; Radoor, S.; Dominic, C.M.; Krishnasamy, S.; Deshmukh, K.; Hameed, N.; Salim, N.V.; Sienkiewicz, N. Turning Waste Plant Fibers into Advanced Plant Fiber Reinforced Polymer Composites: A Comprehensive Review. Compos. Part C, Open Access 2023, 10, 100333. https://doi.org/10.1016/j.jcomc.2022.100333
[11] Matykiewicz, D.; Barczewski, M.; Mousa, M.S.; Sanjay, M.R.; Siengchin, S. Impact Strength of Hybrid Epoxy–Basalt Composites Modified with Mineral and Natural Fillers. ChemEngineering 2021, 5, 56. https://doi.org/10.3390/chemengineering5030056
[12] Patiño, A.A.B.; Lassalle, V.L.; Horst, M.F. Magnetic Hydrochar Nanocomposite Obtained from Sunflower Husk: A Potential Material for Environmental Remediation. J. Mol. Struct. 2021, 1239, 130509. https://doi.org/10.1016/j.molstruc.2021.130509
[13] Marques, B.; Tadeu, A.; António, J.; Almeida, J.; de Brito, J. Mechanical, Thermal and Acoustic Behaviour of Polymer-Based
Composite Materials Produced with Rice Husk and Expanded Cork by-Products. Constr. Build. Mater. 2020, 239, 117851. https://doi.org/10.1016/j.conbuildmat.2019.117851
[14] Zhang, H.; Ding, X.; Chen, X.; Ma, Y.; Wang, Z.; Zhao, X. A New Method of Utilizing Rice Husk: Consecutively Preparing D-xylose, Organosolv Lignin, Ethanol and Amorphous Superfine Silica. J. Hazard. Mater. 2015, 291, 65–73. https://doi.org/10.1016/j.jhazmat.2015.03.003
[15] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. PhD Thesis, Akron University, Akron, Ohio, USA, 2016.
[16] Tatrishvili, T.; Mukbaniani, O.; Kvnikadze, N. Chikhladze, S. Eco-Friendly Bamboo-Based Composites. Chem. Chem. Technol. 2024, 18, 44–56. https://doi.org/10.23939/chcht18.01.044
[17] Tolentino, M. S.; Carpena, J. F.; Javier, R. M.; Aquino, R. R. Thermal Treatment Temperature and Time Dependence of Contact Angle of Water on Fluorinated Polystyrene as Hydrophobic Film Coating. IOP Conf. Series: Mater. Sci. Eng. 2017, 205, 012024. https://doi.org/10.1088/1757-899X/205/1/012024
[18] Petriashvili, G.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Chubinidze M. Light-Stimulated Lowering of Glucose Concentration in a Dextrose Solution Mediated By Merocyanine Molecules. Materiali In Tehnologije 2023, 57, 119–125. https://doi.org/10.17222/mit.2022.639
[19] Brostow, W., Hagg Lobland, H.E. Materials: Introduction and Applications; John Wiley & Sons, 2017. ISBN: 978-1-119-28100-9
[20] Bratychak, M.; Astakhova, O.; Shyshchak, O.; Namiesnik, J.; Ripak, O.; Pyshyev, S. Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar 1. Coumarone-Indene Resins with Carboxy Groups. Chem. Chem. Technol. 2017, 11, 509–516. https://doi.org/10.23939/chcht11.04.509
[21] Mukbaniani, O.; Tatrishvili, T.; Neha, K.R.; Haghi A.K. Biocomposites Environmental and Biomedical Applications; Apple Academic Press, 2023. ISBN: 9781003408468
[22] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33–41. https://doi.org/10.4236/wjm.2015.53004
[23] Lucas, E.F.; Soares, B.G.; Monteiro, E. Caracterização de Polimeros; Rio de Janeiro, 2001. ISBN 85-87922-25-4
[24] Gedde, U.W.; Hedenqvist, M.S. Fundamental Polymer Science, 2nd Edition; Springer, Nature: Switzerland AG, 2019.
[25] Brostow, W.; Fałtynowicz, H.; Gencel, O.; Grigoriev, A.; Hagg Lobland, H.E.; Zhang, D. Mechanical and Tribological Properties of Polymers and Polymer-Based Composites. Chem. Chem. Technol. 2020, 14, 514–520. https://doi.org/10.23939/chcht14.04.514
[26] Brostow, W.; Hagg Lobland, H.E.; Hong, H.J.; Lohse, S.; Osmanson, A.T. Flexibility of Polymers Defined and Related to Dynamic Friction. J. Mater. Sci. Res. 2019, 8, 31–35. https://doi.org/10.5539/jmsr.v8n3p31
[27] Chun, K.S.; Fahamy, N.M.Y.; Yeng, C.Y.; Choo, H.L.; Pang, M.M.; Tshai, K.Y. Wood Plastic Composites Made from Corn Husk Fiber and Recycled Polystyrene Foam. Int. J. Eng. Sci. Technol. 2018, 13, 3445–3456.
[28] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499–506. https://doi.org/10.23939/chcht16.04.499
[29] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758–765. https://doi.org/10.23939/chcht17.04.758
[30] Bukia, T.; Utiashvili, M.; Tsiskarishvili, M.; Jalalishvili, S.; Gogolashvili, A.; Tatrishvili, T.; Petriashvili, G. Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3h-Indolenine. Chem. Chem. Technol. 2023, 17, 549–556. https://doi.org/10.23939/chcht17.03.549
[31] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325–338. https://doi.org/10.23939/chcht17.02.325
[32] Mukbaniani, O.; Tatrishvili, T.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807–819. https://doi.org/10.23939/chcht17.04.807
[33] Jiao, L.L.; Sun, J.H. A Thermal Degradation Study of Insulation Materials Extruded Polystyrene. Procedia Eng. 2014, 71, 622–628. https://doi.org/10.1016/j.proeng.2014.04.089
[34] Chun, K.S.; Husseinsyah, S.; Azizi, F.N. Characterization and Properties of Recycled Polypropylene/Coconut Shell Powder Composites: Effect of Sodium Dodecyl Sulfate Modification. Polym.-Plast. Technol. Mater. 2013, 52, 287–294. https://doi.org/10.1080/03602559.2012.749282
[35] Chun, K.S.; Husseinsyah, S.; Osman, H. Properties of Coconut Shell Filled Polylactic Acid Ecocomposites: Effect of Maleic Acid. Polym. Eng. Sci. 2013, 53, 1109–1116. https://doi.org/10.1002/pen.23359
[36] Chun, K.S.; Husseinsyah, S.; Osman, H. Mechanical and Thermal Properties of Coconut Shell Powder Filled Polylactic Acid Biocomposites: Effects of the Filler Content and Silane Coupling Agent. J. Polym. Res. 2012, 19, 1–8. https://doi.org/10.1007/s10965-012-9859-8
[37] Willert, E. Stoßprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen; Springer Vieweg, 2020.
[38] Rahman, M.R., Hamdan, S.; Hui, J.L.C. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) of Wood polymer nanocomposites. MATEC Web Conf. 2017, 87, 03013. https://doi.org/10.1051/matecconf/20178703013
[39] Ball, R.; McIntosh, A.C.; Brindley, J. The Role of Char-Forming Processes in the Thermal Decomposition of Cellulose. Phys. Chem. Chem. Phys. 1999, 1, 5035–5043. https://doi.org/10.1039/a905867b
[40] Iulianelli, G.; Tavares, M.B.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225–229. https://doi.org/10.23939/chcht04.03.225