Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Novel Composites Based on a Natural Raw Material and Silylated Polystyrene

Tamara Tatrishvili1,2, Omar Mukbaniani, Nikolozi Kvinikadze1,2, Shota Chikhladze2, Tinatini Bukia2,4, Gia Petriashvili2,4, Nana Pirtskheliani2,3, Tamar Makharadze2,4
Affiliation: 
1 Ivane Javakhishvili’ Tbilisi State University, Department of Macromolecular Chemistry, 1 I. Chavchavadze Ave., Tbilisi 0179, Georgia 2 Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, 13 University St., Tbilisi 0186, Georgia 3 Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy, 61 Politkovskaya St., Tbilisi 0186, Georgia 4 Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, 5 Z. Andjzaparidze St., Tbilisi 0186, Georgia tamar.tatrishvili@tsu.ge
DOI: 
https://doi.org/10.23939/chcht18.04.580
AttachmentSize
PDF icon full_text.pdf1.09 MB
Abstract: 
The present paper discusses the development of new, environmentally friendly composite materials with advantageous properties. These composites are based on plant raw material - pine sawdust and trimethoxysilylated polystyrene (TMSPSt). The binder for the composites was obtained by our research group and used in conjunction with different degrees of silylation (15-35%), in the presence of various organic and inorganic additives, fire retardants, and antioxidants. It simultaneously acts as a reinforcing agent. Wood-polymer composites (WPCs) were created at several pressures (5-15 MPa) and temperatures (473-493 K). The surface structure of the novel composites was examined by a range of techniques, including electron microscopy and energy-dispersive X-ray microanalysis. The mechanical properties of the materials were evaluated through a series of tests, including bending testing, Charpy impact testing, and impact viscosity. A well-established methodology was employed for the investigation of the water absorption properties of the composites. Furthermore, the phase state of the materials was investigated by differential scanning calorimetry (DSC), while thermal stability was determined by Vicat and thermogravimetric analysis (TGA). The optimal conditions for producing new environmentally safe composites have been identified. The composites obtained in this manner exhibit excellent mechanical properties, high thermal resistance, ecological purity, and a low water absorption capacity.
References: 

[1] Li, Y. Wood-Polymer Composites. In Advances in Composite Materials - Analysis of Natural and Man-Made Materials; Těšinov, P., Ed.; pp. 229-284. http://dx.doi.org/10.5772/17579
https://doi.org/10.5772/17579

[2] Sheikh, N.; Taromi, F. A. Radiation Induced Polymerization of Vinyl Monomers and their Application for Preparation of Wood-Polymer Composites. Radiat. Phys. Chem. 1993, 42, 179-182. https://doi.org/10.1016/0969-806X(93)90230-R
https://doi.org/10.1016/0969-806X(93)90230-R

[3] Elias, H. B.; Numan, S. Properties of Wood-Plastic Composites: Effect of Inorganic Additives. Radiat. Phys. Chem. 2003, 66, 49. https://doi.org/10.1016/S0969-806X(02)00262-1
https://doi.org/10.1016/S0969-806X(02)00262-1

[4] Schneider, M.H.; Vasic, S.; Lande, S.; Phillips, J.G. Static Bending and Toughness of Wood Polymer Composites (Yellow Birch and Basswood). Wood Sci. Technol. 2003, 37, 165-176. https://doi.org/10.1007/s00226-003-0189-1
https://doi.org/10.1007/s00226-003-0189-1

[5] Umit, C. Y.; Sibel, Y.; Enqin, D. G. Mechanical Properties and Decay Resistance of Wood-Polymer Composites Prepared from Fast Growing Species in Turkey. Bioresour. Technol. 2005, 96, 1003-1011. https://doi.org/10.1016/j.biortech.2004.09.010
https://doi.org/10.1016/j.biortech.2004.09.010

[6] Barton-Pudlik, J.; Czaja, K. Conifer Needles as Thermoplastic Composite Fillers: Structure and Properties. BioResources 2016, 11, 6211-6231. https://doi.org/10.15376/biores.11.3.6211-6231
https://doi.org/10.15376/biores.11.3.6211-6231

[7] Wypych, G. PVC degradation & stabilization, 2nd ed.; Chem Tec Publishing: Toronto, 2008.

[8] Taurino, R.; Bondioli, F.; Messori, M. Use of Different Kinds of Waste in the Construction of New Polymer Composites: Review. Mater. Today Sustain. 2023, 21, 100298. https://doi.org/10.1016/j.mtsust.2022.100298
https://doi.org/10.1016/j.mtsust.2022.100298

[9] Islam, M.; Kovalcik, A.; Hasan, M.; Thakur, V.K. Natural Fiber Reinforced Polymer Composites. Int. J. Polym. Sci. 2015, 813568. https://doi.org/10.1155/2015/813568
https://doi.org/10.1155/2015/813568

[10] Parameswaranpillai, J.; Gopi, A.J.; Radoor, S.; Dominic, C.M.; Krishnasamy, S.; Deshmukh, K.; Hameed, N.; Salim, N.V.; Sienkiewicz, N. Turning Waste Plant Fibers into Advanced Plant Fiber Reinforced Polymer Composites: A Comprehensive Review. Compos. Part C, Open Access 2023, 10, 100333. https://doi.org/10.1016/j.jcomc.2022.100333
https://doi.org/10.1016/j.jcomc.2022.100333

[11] Matykiewicz, D.; Barczewski, M.; Mousa, M.S.; Sanjay, M.R.; Siengchin, S. Impact Strength of Hybrid Epoxy-Basalt Composites Modified with Mineral and Natural Fillers. ChemEngineering 2021, 5, 56. https://doi.org/10.3390/chemengineering5030056
https://doi.org/10.3390/chemengineering5030056

[12] Patiño, A.A.B.; Lassalle, V.L.; Horst, M.F. Magnetic Hydrochar Nanocomposite Obtained from Sunflower Husk: A Potential Material for Environmental Remediation. J. Mol. Struct. 2021, 1239, 130509. https://doi.org/10.1016/j.molstruc.2021.130509
https://doi.org/10.1016/j.molstruc.2021.130509

[13] Marques, B.; Tadeu, A.; António, J.; Almeida, J.; de Brito, J. Mechanical, Thermal and Acoustic Behaviour of Polymer-Based

Composite Materials Produced with Rice Husk and Expanded Cork by-Products. Constr. Build. Mater. 2020, 239, 117851. https://doi.org/10.1016/j.conbuildmat.2019.117851
https://doi.org/10.1016/j.conbuildmat.2019.117851

[14] Zhang, H.; Ding, X.; Chen, X.; Ma, Y.; Wang, Z.; Zhao, X. A New Method of Utilizing Rice Husk: Consecutively Preparing D-xylose, Organosolv Lignin, Ethanol and Amorphous Superfine Silica. J. Hazard. Mater. 2015, 291, 65-73. https://doi.org/10.1016/j.jhazmat.2015.03.003
https://doi.org/10.1016/j.jhazmat.2015.03.003

[15] Swanson, N. Polybutadiene Graft Copolymers as Coupling Agents in Rubber Compounding. PhD Thesis, Akron University, Akron, Ohio, USA, 2016.

[16] Tatrishvili, T.; Mukbaniani, O.; Kvnikadze, N. Chikhladze, S. Eco-Friendly Bamboo-Based Composites. Chem. Chem. Technol. 2024, 18, 44-56. https://doi.org/10.23939/chcht18.01.044
https://doi.org/10.23939/chcht18.01.044

[17] Tolentino, M. S.; Carpena, J. F.; Javier, R. M.; Aquino, R. R. Thermal Treatment Temperature and Time Dependence of Contact Angle of Water on Fluorinated Polystyrene as Hydrophobic Film Coating. IOP Conf. Series: Mater. Sci. Eng. 2017, 205, 012024. https://doi.org/10.1088/1757-899X/205/1/012024
https://doi.org/10.1088/1757-899X/205/1/012024

[18] Petriashvili, G.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Chubinidze M. Light-Stimulated Lowering of Glucose Concentration in a Dextrose Solution Mediated By Merocyanine Molecules. Materiali In Tehnologije 2023, 57, 119-125. https://doi.org/10.17222/mit.2022.639
https://doi.org/10.17222/mit.2022.639

[19] Brostow, W., Hagg Lobland, H.E. Materials: Introduction and Applications; John Wiley & Sons, 2017. ISBN: 978-1-119-28100-9

[20] Bratychak, M.; Astakhova, O.; Shyshchak, O.; Namiesnik, J.; Ripak, O.; Pyshyev, S. Obtaining of Coumarone-Indene Resins Based on Light Fraction of Coal Tar 1. Coumarone-Indene Resins with Carboxy Groups. Chem. Chem. Technol. 2017, 11, 509-516. https://doi.org/10.23939/chcht11.04.509
https://doi.org/10.23939/chcht11.04.509

[21] Mukbaniani, O.; Tatrishvili, T.; Neha, K.R.; Haghi A.K. Biocomposites Environmental and Biomedical Applications; Apple Academic Press, 2023. ISBN: 9781003408468
https://doi.org/10.1201/9781003408512

[22] Liu, C.; Tanaka, Y.; Fujimoto Y. Viscosity Transient Phenomenon during Drop Impact Testing and Its Simple Dynamics Model. World J. Mech. 2015, 5, 33-41. https://doi.org/10.4236/wjm.2015.53004
https://doi.org/10.4236/wjm.2015.53004

[23] Lucas, E.F.; Soares, B.G.; Monteiro, E. Caracterização de Polimeros; Rio de Janeiro, 2001. ISBN 85-87922-25-4

[24] Gedde, U.W.; Hedenqvist, M.S. Fundamental Polymer Science, 2nd Edition; Springer, Nature: Switzerland AG, 2019.
https://doi.org/10.1007/978-3-030-29794-7

[25] Brostow, W.; Fałtynowicz, H.; Gencel, O.; Grigoriev, A.; Hagg Lobland, H.E.; Zhang, D. Mechanical and Tribological Properties of Polymers and Polymer-Based Composites. Chem. Chem. Technol. 2020, 14, 514-520. https://doi.org/10.23939/chcht14.04.514
https://doi.org/10.23939/chcht14.04.514

[26] Brostow, W.; Hagg Lobland, H.E.; Hong, H.J.; Lohse, S.; Osmanson, A.T. Flexibility of Polymers Defined and Related to Dynamic Friction. J. Mater. Sci. Res. 2019, 8, 31-35. https://doi.org/10.5539/jmsr.v8n3p31
https://doi.org/10.5539/jmsr.v8n3p31

[27] Chun, K.S.; Fahamy, N.M.Y.; Yeng, C.Y.; Choo, H.L.; Pang, M.M.; Tshai, K.Y. Wood Plastic Composites Made from Corn Husk Fiber and Recycled Polystyrene Foam. Int. J. Eng. Sci. Technol. 2018, 13, 3445-3456.

[28] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modeling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2022, 16, 499-506. https://doi.org/10.23939/chcht16.04.499
https://doi.org/10.23939/chcht16.04.499

[29] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758-765. https://doi.org/10.23939/chcht17.04.758
https://doi.org/10.23939/chcht17.04.758

[30] Bukia, T.; Utiashvili, M.; Tsiskarishvili, M.; Jalalishvili, S.; Gogolashvili, A.; Tatrishvili, T.; Petriashvili, G. Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3h-Indolenine. Chem. Chem. Technol. 2023, 17, 549-556. https://doi.org/10.23939/chcht17.03.549
https://doi.org/10.23939/chcht17.03.549

[31] Mukbaniani, O.; Tatrishvili, T.; Kvinikadze, N.; Bukia, T.; Pachulia, Z.; Pirtskheliani, N.; Petriashvili, G. Friedel-Crafts Reaction of Vinyltrimethoxysilane with Styrene and Composite Materials on Their Base. Chem. Chem. Technol. 2023, 17, 325-338. https://doi.org/10.23939/chcht17.02.325
https://doi.org/10.23939/chcht17.02.325

[32] Mukbaniani, O.; Tatrishvili, T.; Kvnikadze, N.; Bukia, T.; Pirtskheliani, N.; Makharadze, T.; Petriashvili, G. Bamboo-Containing Composites with Environmentally Friendly Binders. Chem. Chem. Technol. 2023, 17, 807-819. https://doi.org/10.23939/chcht17.04.807
https://doi.org/10.23939/chcht17.04.807

[33] Jiao, L.L.; Sun, J.H. A Thermal Degradation Study of Insulation Materials Extruded Polystyrene. Procedia Eng. 2014, 71, 622-628. https://doi.org/10.1016/j.proeng.2014.04.089
https://doi.org/10.1016/j.proeng.2014.04.089

[34] Chun, K.S.; Husseinsyah, S.; Azizi, F.N. Characterization and Properties of Recycled Polypropylene/Coconut Shell Powder Composites: Effect of Sodium Dodecyl Sulfate Modification. Polym.-Plast. Technol. Mater. 2013, 52, 287-294. https://doi.org/10.1080/03602559.2012.749282
https://doi.org/10.1080/03602559.2012.749282

[35] Chun, K.S.; Husseinsyah, S.; Osman, H. Properties of Coconut Shell Filled Polylactic Acid Ecocomposites: Effect of Maleic Acid. Polym. Eng. Sci. 2013, 53, 1109-1116. https://doi.org/10.1002/pen.23359
https://doi.org/10.1002/pen.23359

[36] Chun, K.S.; Husseinsyah, S.; Osman, H. Mechanical and Thermal Properties of Coconut Shell Powder Filled Polylactic Acid Biocomposites: Effects of the Filler Content and Silane Coupling Agent. J. Polym. Res. 2012, 19, 1-8. https://doi.org/10.1007/s10965-012-9859-8
https://doi.org/10.1007/s10965-012-9859-8

[37] Willert, E. Stoßprobleme in Physik, Technik und Medizin: Grundlagen und Anwendungen; Springer Vieweg, 2020.
https://doi.org/10.1007/978-3-662-60296-6

[38] Rahman, M.R., Hamdan, S.; Hui, J.L.C. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) of Wood polymer nanocomposites. MATEC Web Conf. 2017, 87, 03013. https://doi.org/10.1051/matecconf/20178703013
https://doi.org/10.1051/matecconf/20178703013

[39] Ball, R.; McIntosh, A.C.; Brindley, J. The Role of Char-Forming Processes in the Thermal Decomposition of Cellulose. Phys. Chem. Chem. Phys. 1999, 1, 5035-5043. https://doi.org/10.1039/a905867b
https://doi.org/10.1039/a905867b

[40] Iulianelli, G.; Tavares, M.B.; Luetkmeyer, L. Water Absorption Behavior and Impact Strength of PVC/Wood Flour Composites. Chem. Chem. Technol. 2010, 4, 225-229. https://doi.org/10.23939/chcht04.03.225
https://doi.org/10.23939/chcht04.03.225