Композиційні матеріали на основі фосфогіпсу для конструктивних шарів дорожнього одягу
Attachment | Size |
---|---|
full_text.pdf | 667.45 KB |
Keywords:
[1] Ivashchenko, T.; Ince, I. Ecological Aspects of Phosphogypsum Utilization Technologies. Visnyk of Chernihiv State Technological University 2014, 2, 223–228. http://ir.stu.cn.ua/123456789/7462
[2] Chernysh, Ye.Yu.; Vaskin, R.A.; Yakhnenko, O.M. Rozrobka ekolohichno bezpechnykh tekhnolohichnykh rishen utylizatsii fosfohipsu v tekhnolohiiakh zakhystu navkolyshnoho seredovyshcha. Ecological Safety and Balanced Use of Resources 2017, 2, 140–147. https://ebzr.nung.edu.ua/index.php/ebzr/article/view/166
[3] Malanchuk, Z.R.; Korniienko, V.Ya.; Vasylchuk, O.Yu.; Zaiets, V.V. Problemy pererobky ta vyluchennia ridkozemelnykh metaliv z tekhnohennykh rodovyshch fosfohipsu. Science and Education a New Dimension. Natural and Technical Sciences 2018, 179, 55–58. https://doi.org/10.31174/SEND-NT2018-179VI21-14
[4] Malanchuk, Z.; Korniyenko, V.; Malanchuk, Y.; Khrystyuk, A. Results of Experimental Studies of Amber Extraction by Hydromechanical Method in Ukraine. EasternEuropean J. Enterp. Technol. 2016, 3, 24–28 https://doi.org/10.15587/1729-4061.2016.72404
[5] Malanchuk, Z.; Malanchuk, Y.; Korniyenko, V.; Ignatyuk, I. Examining Features of the Process of Heavy Metals Distribution in Technogenic Placers at Hydraulic Mining. EasternEuropean J. Enterp. Technol. 2017, 1, 45–51. https://doi.org/10.15587/1729-4061.2017.92638
[6] Yakhnenko, O.M.; Chernysh, Ye.Yu.; Pliatsuk, L.D.; Trunova, I.O. Samozarostannia vidvalu fosfohipsu yak pokaznyk rivnia tekhnohennoho navantazhennia na dovkillia. Ecological Safety and Balanced Use of Resources 2015, 1, 110–119. https://ebzr.nung.edu.ua/index.php/ebzr/article/view/214
[7] Tsioka, M.; Voudrias, E. A. Comparison of Alternative Management Methods for Phosphogypsum Waste Using Life Cycle Analysis. J. Clean. Prod. 2020, 266, 121386. https://doi.org/10.1016/j.jclepro.2020.121386
[8] Orlovskyy, V.; Bileckyy, V.; Malovanyy, M. Development of Lightweight Grouting Materials Based on By-Products of Ukrainian Industry. Chem. Chem. Technol. 2023, 17, 666–673 https://doi.org/10.23939/chcht17.03.666
[9] Chaimaâ, D.A.; Khaled, L.; Amina, A.; Kamal, E.O. Moroccan Phosphogypsum Use in Road Engineering: Materials and Structure Optimization. J. Mater. Sci. Eng. A. 2022, 12, 115–130. https://doi.org/10.17265/2161-6213/2022.10-12.002
[10] Folek, S.; Walawska, B.; Wilczek, B.; Miśkiewicz, J. Use of Phosphogypsum in Road Construction. Polish J. Chem. Technol. 2011, 13, 18–22. https://doi.org/10.2478/v10026-011-0018-5
[11] Diouri, C.; Echehbani, I.; Lahlou, K.; Omari, K. E.; Alaoui, A. Valorization of Moroccan Phosphogypsum in Road Engineering: Parametric Study. Materials Today: Proceedings 2022, 58, 1054–1058. https://doi.org/10.1016/j.matpr.2022.01.084
[12] Malkawi, D.A.; Rabab'ah, S.R.; AlSyouf, M.M.; Aldeeky,H. Utilizing Expansive Soil Treated with Phosphogypsum and Lime in Pavement Construction. Results in Engineering 2023, 19, 101256. https://doi.org/10.1016/j.rineng.2023.101256
[13] Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Phosphogypsum Recycling: New Horizons for a More Sustainable Road Material Application. J. Build. Eng. 2020, 30, 101267. https://doi.org/10.1016/j.jobe.2020.101267
[14] Meskini, S.; Samdi, A.; Ejjaouani, H.; Remmal, T. Valorization of Phosphogypsum as a Road Material: Stabilizing Effect of Fly Ash and Lime Additives on Strength and Durability. J. Clean. Prod. 2021, 323, 129161. https://doi.org/10.1016/j.jclepro.2021.129161
[15] Zmemla, R.; Benjdidia, M.; Naifar, I.; Sadik, C.; Elleuch, B.; Sdiri, A. A Phosphogypsum‐Based Road Material with Enhanced Mechanical Properties for Sustainable Environmental Remediation. Environ. Prog. Sustainable Energy 2022, 41, e13732. https://doi.org/10.1002/ep.13732
[16] Shen, W.; Zhou, M.; Zhao, Q. Study on Lime–Fly Ash–Phosphogypsum Binder. Constr Build Mater. 2007, 21, 1480–1485. https://doi.org/10.1016/j.conbuildmat.2006.07.010
[17] Shen, W.; Zhou, M.; Ma, W.; Hu, J.; Cai, Z. Investigation on the Application of Steel Slag–Fly Ash–Phosphogypsum Solidified Material as Road Base Material. J. Hazard. Mater. 2009, 164, 99–104. https://doi.org/10.1016/j.jhazmat.2008.07.125
[18] Orlovskyy, V.; Malovanyy, M.; Bileckyy, V.; Sokur, M. Physico-Chemical Peculiarities of Weighted Thermostable Plugging Materials Hydration. Chem. Chem. Technol. 2021, 15, 599–607. https://doi.org/10.23939/chcht15.04.599
[19] Orlovskyy, V.; Bileckyy, V.; Malovanyy, M. Research of Lime-Ash Plugging Mixtures. Chem. Chem. Technol. 2022, 16, 621–629. https://doi.org/10.23939/chcht16.04.621
[20] Dzhumelia, E.A. Ekolohichna bezpeka hirnycho-khimichnoho pidpryyemstva na stadii likvidatsii. Ph.D. Thesis [Online]; Lviv Polytechnic National University: Lviv, 2020. https://ena.lpnu.ua/handle/ntb/56155 (accessed Aug 7, 2023).
[21] Dvorkin, L.I. Budivelni viazhuchi materialy; Kondor: Rivne, 2019; pp 472–477.
[22] DSTU B V. 2.7-2-93 (National Standard of Ukraine) Building materials. Phosphogyps Conditional for the production of gypsum binder and artificial gypsum stones.
[23] DSTU B EN 197-1:2015 (National Standard of Ukraine) Cement. Part 1: Composition, specifications and conformity criteria for common cements (EN 197-1:2011, IDT).
[24] DSTU 8977:2020 (National Standard of Ukraine) Road Materials, Produced by cold recycling technology. Test methods.
[25] DSTU 9177-3:2022 (National Standard of Ukraine) Crushed stone materials and gravel materials for the road building industry. Part 3. The Materials bound by the mineral binders.
[26] Yefimenko, A.S. Pidvyshchennya vodostiikosti hipsu polifraktsiinymi mineralnymy dobavkamy. Ph.D. Thesis, Ukrainian State University of Railway Transport: Kharkiv, 2021.
[27] Ye, H.; Chen, Z.; Huang, L. Mechanism of Sulfate Attack on Alkali-Activated Slag: The Role of Activator Composition. Cem Concr Res 2019, 125, 105868. https://doi.org/10.1016/j.cemconres.2019.105868
[28] Ivashchyshyn, H.; Sanytsky, M.; Kropyvnytska, T.; Rusyn, B. Study of Low-Emission Multi-Component Cements with a High Content of Supplementary Cementitious Materials. EasternEuropean J. Enterp. Technol. 2019, 4, 39–47. https://doi.org/10.15587/1729-4061.2019.175472
[29] Krivenko, P.; Sanytsky M.; Kropyvnytska T. Alkali-Sulfate Activated Blended Porland Cements. Solid State Phenom. 2018, 276, 9–14. https://doi.org/10.4028/www.scientific.net/SSP.276.9
[30] Marushchak, U.; Sanytsky, M.; Pozniak, O.; Mazurak, O. Peculiarities of Nanomodified Portland Systems Structure Formation. Chem. Chem. Technol. 2019, 13, 510–517 https://doi.org/10.23939/chcht13.04.510
[31] Solodkyy, S.J.; Novytskyi, Y.L.; Topylko, N.I.; Turba, Y.V. Research of Influence of Polymer Additives-Stabilizers on Physical-Mechanical Indicators and Microstructure of Cement Ground. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 708, 012107. https://doi.org/10.1088/1757-899X/708/1/012107