Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Composite Materials Based on Phosphogypsum for Constructive Layers of Road Pavement

Yurii Novytskyi1, Nataliia Topylko1, Uliana Marushchak2, Yura Turba1
Affiliation: 
1 Lviv Polytechnic National University, Department of Highways and Bridges. 12 S. Bandery St., 79013, Lviv, Ukraine 2 Lviv Polytechnic National University, Department of Building Production. 12 S. Bandery St., 79013, Lviv, Ukraine nataliia.i.topylko@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.01.007
AttachmentSize
PDF icon full_text.pdf667.45 KB
Abstract: 
The article contains research materials on solving the problem of utilization of waste phosphogypsum by using it in the layers of the road base. For this purpose, composite mixtures based on raw dump phosphogypsum were prepared. The composition of the composite mixtures was optimized to maximize the phosphogypsum content. The phosphogypsum was stabilized with ground granulated blast furnace slag and Portland cement. Laboratory tests have shown that the phosphogypsum-based composite materials meet the requirements of the National Standard of Ukraine DSTU 9177-3:2022 in terms of uniaxial compressive strength and frost resistance. The newly formed mineral phases during the hydration of composite materials based on phosphogypsum-ground granulated blast furnace slag-Portland cement were described using X-ray diffractometric analysis.
References: 

[1] Ivashchenko, T.; Ince, I. Ecological Aspects of Phosphogypsum Utilization Technologies. Visnyk of Chernihiv State Technological University 2014, 2, 223-228. http://ir.stu.cn.ua/123456789/7462

[2] Chernysh, Ye.Yu.; Vaskin, R.A.; Yakhnenko, O.M. Rozrobka ekolohichno bezpechnykh tekhnolohichnykh rishen utylizatsii fosfohipsu v tekhnolohiiakh zakhystu navkolyshnoho seredovyshcha. Ecological Safety and Balanced Use of Resources 2017, 2, 140-147. https://ebzr.nung.edu.ua/index.php/ebzr/article/view/166

[3] Malanchuk, Z.R.; Korniienko, V.Ya.; Vasylchuk, O.Yu.; Zaiets, V.V. Problemy pererobky ta vyluchennia ridkozemelnykh metaliv z tekhnohennykh rodovyshch fosfohipsu. Science and Education a New Dimension. Natural and Technical Sciences 2018, 179, 55-58. https://doi.org/10.31174/SEND-NT2018-179VI21-14
https://doi.org/10.31174/SEND-NT2018-179VI21-14

[4] Malanchuk, Z.; Korniyenko, V.; Malanchuk, Y.; Khrystyuk, A. Results of Experimental Studies of Amber Extraction by Hydromechanical Method in Ukraine. EasternEuropean J. Enterp. Technol. 2016, 3, 24-28 https://doi.org/10.15587/1729-4061.2016.72404
https://doi.org/10.15587/1729-4061.2016.72404

[5] Malanchuk, Z.; Malanchuk, Y.; Korniyenko, V.; Ignatyuk, I. Examining Features of the Process of Heavy Metals Distribution in Technogenic Placers at Hydraulic Mining. EasternEuropean J. Enterp. Technol. 2017, 1, 45-51. https://doi.org/10.15587/1729-4061.2017.92638
https://doi.org/10.15587/1729-4061.2017.92638

[6] Yakhnenko, O.M.; Chernysh, Ye.Yu.; Pliatsuk, L.D.; Trunova, I.O. Samozarostannia vidvalu fosfohipsu yak pokaznyk rivnia tekhnohennoho navantazhennia na dovkillia. Ecological Safety and Balanced Use of Resources 2015, 1, 110-119. https://ebzr.nung.edu.ua/index.php/ebzr/article/view/214

[7] Tsioka, M.; Voudrias, E. A. Comparison of Alternative Management Methods for Phosphogypsum Waste Using Life Cycle Analysis. J. Clean. Prod. 2020, 266, 121386. https://doi.org/10.1016/j.jclepro.2020.121386
https://doi.org/10.1016/j.jclepro.2020.121386

[8] Orlovskyy, V.; Bileckyy, V.; Malovanyy, M. Development of Lightweight Grouting Materials Based on By-Products of Ukrainian Industry. Chem. Chem. Technol. 2023, 17, 666-673 https://doi.org/10.23939/chcht17.03.666
https://doi.org/10.23939/chcht17.03.666

[9] Chaimaâ, D.A.; Khaled, L.; Amina, A.; Kamal, E.O. Moroccan Phosphogypsum Use in Road Engineering: Materials and Structure Optimization. J. Mater. Sci. Eng. A. 2022, 12, 115-130. https://doi.org/10.17265/2161-6213/2022.10-12.002
https://doi.org/10.17265/2161-6213/2022.10-12.002

[10] Folek, S.; Walawska, B.; Wilczek, B.; Miśkiewicz, J. Use of Phosphogypsum in Road Construction. Polish J. Chem. Technol. 2011, 13, 18-22. https://doi.org/10.2478/v10026-011-0018-5
https://doi.org/10.2478/v10026-011-0018-5

[11] Diouri, C.; Echehbani, I.; Lahlou, K.; Omari, K. E.; Alaoui, A. Valorization of Moroccan Phosphogypsum in Road Engineering: Parametric Study. Materials Today: Proceedings 2022, 58, 1054-1058. https://doi.org/10.1016/j.matpr.2022.01.084
https://doi.org/10.1016/j.matpr.2022.01.084

[12] Malkawi, D.A.; Rabab'ah, S.R.; AlSyouf, M.M.; Aldeeky,H. Utilizing Expansive Soil Treated with Phosphogypsum and Lime in Pavement Construction. Results in Engineering 2023, 19, 101256. https://doi.org/10.1016/j.rineng.2023.101256
https://doi.org/10.1016/j.rineng.2023.101256

[13] Amrani, M.; Taha, Y.; Kchikach, A.; Benzaazoua, M.; Hakkou, R. Phosphogypsum Recycling: New Horizons for a More Sustainable Road Material Application. J. Build. Eng. 2020, 30, 101267. https://doi.org/10.1016/j.jobe.2020.101267
https://doi.org/10.1016/j.jobe.2020.101267

[14] Meskini, S.; Samdi, A.; Ejjaouani, H.; Remmal, T. Valorization of Phosphogypsum as a Road Material: Stabilizing Effect of Fly Ash and Lime Additives on Strength and Durability. J. Clean. Prod. 2021, 323, 129161. https://doi.org/10.1016/j.jclepro.2021.129161
https://doi.org/10.1016/j.jclepro.2021.129161

[15] Zmemla, R.; Benjdidia, M.; Naifar, I.; Sadik, C.; Elleuch, B.; Sdiri, A. A Phosphogypsum‐Based Road Material with Enhanced Mechanical Properties for Sustainable Environmental Remediation. Environ. Prog. Sustainable Energy 2022, 41, e13732. https://doi.org/10.1002/ep.13732
https://doi.org/10.1002/ep.13732

[16] Shen, W.; Zhou, M.; Zhao, Q. Study on Lime-Fly Ash-Phosphogypsum Binder. Constr Build Mater. 2007, 21, 1480-1485. https://doi.org/10.1016/j.conbuildmat.2006.07.010
https://doi.org/10.1016/j.conbuildmat.2006.07.010

[17] Shen, W.; Zhou, M.; Ma, W.; Hu, J.; Cai, Z. Investigation on the Application of Steel Slag-Fly Ash-Phosphogypsum Solidified Material as Road Base Material. J. Hazard. Mater. 2009, 164, 99-104. https://doi.org/10.1016/j.jhazmat.2008.07.125
https://doi.org/10.1016/j.jhazmat.2008.07.125

[18] Orlovskyy, V.; Malovanyy, M.; Bileckyy, V.; Sokur, M. Physico-Chemical Peculiarities of Weighted Thermostable Plugging Materials Hydration. Chem. Chem. Technol. 2021, 15, 599-607. https://doi.org/10.23939/chcht15.04.599
https://doi.org/10.23939/chcht15.04.599

[19] Orlovskyy, V.; Bileckyy, V.; Malovanyy, M. Research of Lime-Ash Plugging Mixtures. Chem. Chem. Technol. 2022, 16, 621-629. https://doi.org/10.23939/chcht16.04.621
https://doi.org/10.23939/chcht16.04.621

[20] Dzhumelia, E.A. Ekolohichna bezpeka hirnycho-khimichnoho pidpryyemstva na stadii likvidatsii. Ph.D. Thesis [Online]; Lviv Polytechnic National University: Lviv, 2020. https://ena.lpnu.ua/handle/ntb/56155 (accessed Aug 7, 2023).

[21] Dvorkin, L.I. Budivelni viazhuchi materialy; Kondor: Rivne, 2019; pp 472-477.

[22] DSTU B V. 2.7-2-93 (National Standard of Ukraine) Building materials. Phosphogyps Conditional for the production of gypsum binder and artificial gypsum stones.

[23] DSTU B EN 197-1:2015 (National Standard of Ukraine) Cement. Part 1: Composition, specifications and conformity criteria for common cements (EN 197-1:2011, IDT).

[24] DSTU 8977:2020 (National Standard of Ukraine) Road Materials, Produced by cold recycling technology. Test methods.

[25] DSTU 9177-3:2022 (National Standard of Ukraine) Crushed stone materials and gravel materials for the road building industry. Part 3. The Materials bound by the mineral binders.

[26] Yefimenko, A.S. Pidvyshchennya vodostiikosti hipsu polifraktsiinymi mineralnymy dobavkamy. Ph.D. Thesis, Ukrainian State University of Railway Transport: Kharkiv, 2021.

[27] Ye, H.; Chen, Z.; Huang, L. Mechanism of Sulfate Attack on Alkali-Activated Slag: The Role of Activator Composition. Cem Concr Res 2019, 125, 105868. https://doi.org/10.1016/j.cemconres.2019.105868
https://doi.org/10.1016/j.cemconres.2019.105868

[28] Ivashchyshyn, H.; Sanytsky, M.; Kropyvnytska, T.; Rusyn, B. Study of Low-Emission Multi-Component Cements with a High Content of Supplementary Cementitious Materials. EasternEuropean J. Enterp. Technol. 2019, 4, 39-47. https://doi.org/10.15587/1729-4061.2019.175472
https://doi.org/10.15587/1729-4061.2019.175472

[29] Krivenko, P.; Sanytsky M.; Kropyvnytska T. Alkali-Sulfate Activated Blended Porland Cements. Solid State Phenom. 2018, 276, 9-14. https://doi.org/10.4028/www.scientific.net/SSP.276.9
https://doi.org/10.4028/www.scientific.net/SSP.276.9

[30] Marushchak, U.; Sanytsky, M.; Pozniak, O.; Mazurak, O. Peculiarities of Nanomodified Portland Systems Structure Formation. Chem. Chem. Technol. 2019, 13, 510-517 https://doi.org/10.23939/chcht13.04.510
https://doi.org/10.23939/chcht13.04.510

[31] Solodkyy, S.J.; Novytskyi, Y.L.; Topylko, N.I.; Turba, Y.V. Research of Influence of Polymer Additives-Stabilizers on Physical-Mechanical Indicators and Microstructure of Cement Ground. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 708, 012107. https://doi.org/10.1088/1757-899X/708/1/012107
https://doi.org/10.1088/1757-899X/708/1/012107