Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Гідрогелі в біомедицині: гранульні системи контрольованого вивільнення на основі (ко)полімерів 2-гідроксіетилметакрилату. огляд

Nataliya Semenyuk1, Galyna Dudok1, Volodymyr Skorokhoda1
Affiliation: 
1 Lviv Polytechnic National University, 12 Bandery St., 79013 Lviv, Ukraine vskorohoda@yahoo.com
DOI: 
https://doi.org/10.23939/chcht18.02.143
AttachmentSize
PDF icon full_text.pdf498.38 KB
Abstract: 
Проаналізовано й узагальнено останні досягнення в галузі створення полімерних систем для пристроїв контрольованого вивільнення речовин у середовище дії на основі гідрогелевих матеріалів. Представлено можливі напрями доставки ліків, зокрема за допомогою гранульних гідрогелів, які працюють за принципом сорбція лікарського засобу – вивільнення його в організмі. Проаналізовано дослідження закономірностей синтезу, структури, властивостей і перспектив застосування гранульних гідрогелів на основі 2-гідроксіетилметакрилату та його кополімерів, зокрема з полівінілпіролідоном, як систем контрольованого вивільнення речовин, зокрема ліків.
References: 

[1] Campbell, S.; Smeets, N. Drug Delivery: Polymers in the Development of Controlled Release Systems. In Functional Polymers. Polymers and Polymeric Composites: A Reference Series; Springer, Cham., 2019; pp 1–29. https://doi.org/10.1007/978-3-319-92067-2_20-1
[2] Giammona, G.; Craparo, E.F. Polymer-Based Systems for Controlled Release and Targeting of Drugs. Polymer 2019, 11, 2066. https://doi.org/10.3390/polym11122066
[3] Suberlyak, O.; Skorokhoda, V.; Semenyuk, N.; Lukan, G.; Chopyk, N. Microspheric Hydrogel Polymers as Effective Drug Delivery Systems. Czasopismo techniczne 2006, 6-M, 463–466. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article...
[4] Benoit, D.S.W.; Overby, C.T.; Sims Jr, K.R.; Ackun-Farmmer, M.A. 2.5.12 - Drug delivery systems; Biomaterials Science. In Biomaterials Science; Eds. Academic Press, 2020; pp 1237–1266. https://doi.org/10.1016/B978-0-12-816137-1.00078-7
[5] Sánchez, A.; Mejía, S.P.; Orozco, J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020, 25, 3760. https://doi.org/10.3390/molecules25163760
[6] Miladi K.; Ibraheem D.; Iqbal M.; Sfar S.; Fessi H.; Elaissari A. Particles from Preformed Polymers as Carriers for Drug Delivery. EXCLI J. 2014, 13, 28–57. https://doi.org/10.17877/DE290R-15560
[7] Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. https://doi.org/10.3390/gels9070523
[8] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels; Haider, S.; Haider, A., Eds.; IntechOpen; London, 2018; pp 136–214. https://doi.org/10.5772/intechopen.72082
[9] Zhang, W.; Chen, S.; Jiang, W.; Zhang, Q.; Liu, N.; Wang, Z.; Li, Z.; Zhang, D. Double-Network Hydrogels for Biomaterials: Structure-Property Relationships and Drug Delivery. Eur. Polym. J. 2023, 185, 111807. https://doi.org/10.1016/j.eurpolymj.2022.111807
[10] Drury, J.L.; Mooney, D.J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomater. 2003, 24, 4337–4351. https://doi.org/10.1016/s0142-9612(03)00340-5
[11] Lin, C.; Anseth, K. PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharm. Res. 2009, 26, 631–643. https://doi.org/10.1007/s11095-008-9801-2
[12] Slaughter, B.V.; Khurshid, S.S.; Omar, Z.F.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. J. Adv. Mater. 2009, 21, 3307–3329. https://doi.org/10.1002/adma.200802106
[13] Thi, T.T.H.; Laney M.; Zhang, H.; Martinez, F.; Lee, Y.; Jang, Y. C. Designing Biofunctional Hydrogels for Stem Cell Biology and Regenerative Medicine Applications. J. Ind. Eng. Chem. 2024, 129, 69–104. https://doi.org/10.1016/j.jiec.2023.08.042
[14] Toh, W.S.; Loh, X.J. Advances in Hydrogel Delivery Systems for Tissue Regeneration. Mater. Sci. Eng. C 2014, 45, 690–697. https://doi.org/10.1016/j.msec.2014.04.026
[15] Ji, D.Y.; Kuo, T.F.; Wu, H.D.; Yang, J.C.; Lee, S.Y. A Novel Injectable Chitosan/Polyglutamate Polyelectrolyte Complex Hydrogel with Hydroxyapatite for Soft-Tissue Augmentation. Carbohydr. Polym. 2012, 89, 1123–1130. https://doi.org/10.1016/j.carbpol.2012.03.083
[16] Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel Machines. Mater. Today 2020, 36, 102–124. https://doi.org/10.1016/j.mattod.2019.12.026
[17] Mahinroosta, M.; Farsangi, Z. J.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42–55. https://doi.org/10.1016/j.mtchem.2018.02.004
[18] Mehta P.; Sharma, M.; Devi, M. Hydrogels: An Overview of its Classifications, Properties, and Applications. J. Mech. Behav. Biomed. Mater. 2023, 147, 106145. https://doi.org/10.1016/j.jmbbm.2023.106145
[19] Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng.: C 2017, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096
[20] Kapate N.; Clegg J. R.; Mitragotri S. Non-Spherical Micro- and Nanoparticles for Drug Delivery: Progress over 15 Years. Adv. Drug Deliv. Rev. 2021, 177, 113807. https://doi.org/10.1016/j.addr.2021.05.017
[21] Wang, L.; Li, L.; Sun, Y.; Ding, J.; Li, J.; Duan, X.; Li, Y.; Junyaprasert, V.B.; Mao, S. In vitro and in vivo Evaluation of Chitosan Graft Glyceryl Monooleate as Peroral Delivery Carrier of Enoxaparin. Int. J. Pharm. 2014, 471, 391–399. https://doi.org/10.1016/j.ijpharm.2014.05.050
[22] Motlekar, N.A.; Youan, B.B.C. The Quest for Non-Invasive Delivery of Bioactive Macromolecules: A Focus on Heparins. J. Control Release 2006, 113, 91–101. https://doi.org/10.1016/j.jconrel.2006.04.008
[23] Lai, W. F.; He, Z. D. Design and Fabrication of Hydrogel-Based Nanoparticulate Systems for in vivo Drug Delivery. J. Control Release 2016, 243, 269–82. https://doi.org/10.1016/j.jconrel.2016.10.013
[24] Akgöl, S.; Öztürk, N.; Denizli, A. New Generation Polymeric Nanospheres for Catalase Immobilization. J. Appl. Polym. Sci. 2009, 114, 962–970. https://doi.org/10.1002/app.29790
[25] Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20. https://doi.org/10.3390/scipharm87030020
[26] Zhang, Y.; Huang, Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front. Chem. 2021, 8, 6156565. https://doi.org/10.3389/fchem.2020.615665]
[27] Brooks, B.W. Suspension Polymerization Processes. Chem. Eng. Technol. 2010, 33, 1737–1744. https://doi.org/10.1002/ceat.201000210
[28] Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical Applications of Hydrogels in Drug Delivery System: An Update. J. Drug Deliv. Sci. Technol. 2021, 66, 102914. https://doi.org/10.1016/j.jddst.2021.102914
[29] Gelli, R.; Mugnaini, G.; Bolognesi, T.; Bonini, M. Cross-Linked Porous Gelatin Microparticles with Tunable Shape, Size and Porosity. Langmuir 2021, 37, 12781–12789. https://doi.org/10.1021/acs.langmuir.1c01508
[30] Quadrado, R.F.N.; Fajardo, A.R. Microparticles Based on Carboxymethyl Starch/Chitosan Polyelectrolyte Complex as Vehicles for Drug Delivery Systems. Arab. J. Chem. 2020, 13, 2183–2194. https://doi.org/10.1016/j.arabjc.2018.04.004
[31] Goyal, P. K.; Khurana, S.; Mittal, A. Hydrogel-Bound Cytotoxic Drug Delivery System for Breast Cancer. Health Sci. Rev. 2023, 9, 100140. https://doi.org/10.1016/j.hsr.2023.100140
[32] Holcapkova, P.; Hrabalikova, M.; Stoplova, P.; Sedlarik, V. Core-Shell PLA-PVA Porous Microparticles as Carriers for Bacteriocin Nisin. J. Microencapsul. 2017, 34, 243–249. https://doi.org/10.1080/02652048.2017.1324919
[33] Peterson, T.E.; Gigliobianco, G.; Sherborne, C.; Green, N.H.; Dugan, J.M.; MacNeil, S.; Reilly, G.C.; Claeyssens, F. Porous Microspheres Support Mesemchymal Progenitor Cell Ingrowth and Stimulate Angiogenesis. APL Bioeng. 2018,2, 026103. https://doi.org/10.1063/1.5008556
[34] Ray, P.; Maity, M.; Barik, H.; Sahoo, G. S.; Hasnain, M. S.; Hoda, M. N.; Nayak, A. K. Chapter 3 - Alginate-Based Hydrogels for Drug Delivery Applications. In Alginates in Drug Delivery; Academic Press, 2020; pp 41–70. https://doi.org/10.1016/B978-0-12-817640-5.00003-0
[35] Ai, Y.; Lin, Zh.; Zhao, W.; Cui, M.; Qi, W.; Huang, R.; Su, R. Nanocellulose-Based Hydrogels for Drug Delivery. J. Mater. Chem. B 2023, 30, 7004–7023. https://doi.org/10.1039/D3TB00478C
[36] Park, J.; Lim, Y.; Baik, J.J.; Jeong, J.; An, S.; Jeong, S.I.; Gwon, H.; & Khil, M.S. Preparation and Evaluation of β-Glucan Hydrogel Prepared by the Radiation Technique for Drug Carrier Applications. Int. J. Biol. Macromol. 2018, 118, 333–339. https://doi.org/10.1016/j.ijbiomac.2018.06.068
[37] Chen, L.; Deng, X.; Tian, L.; Xie,J.; Xiang, Y.; Liang, X.; Jiang, L.; Jiang, L. Preparation and Properties of Chitosan/Dialdehyde Sodium Alginate/Dopamine Magnetic Drug-Delivery Hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 13273. https://doi.org/10.1016/j.colsurfa.2023.132739
[38] Auriemma, G.; Russo, P.; Del Gaudio, P.; García-González, C.A.; Landín, M.; Aquino, R.P. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules 2020, 25, 3156. https://doi.org/10.3390/molecules25143156
[39] Drăgan, E.S.; Cocarta, A.I.; Gierszewska, M. Designing Novel Macroporous Composite Hydrogels Based on Methacrylic Acid Copolymers and Chitosan and in vitro Assessment of Lysozyme Controlled Delivery. Colloids Surf. B 2016, 139, 33–41. https://doi.org/10.1016/j.colsurfb.2015.12.011
[40] Jing, Z.; Zhang, G.; Sun, X.F.; Shi, X.; Sun, W. Preparation and Adsorption Properties of a Novel Superabsorbent Based on Multiwalled Carbon Nanotubes–Xylan Composite and Poly(Methacrylic Acid) for Methylene Blue from Aqueous Solution. Polym. Compos. 2014, 35, 1516. https://doi.org/10.1002/pc.22805
[41] Wang, Y.; Yuan, Z.C.; Chen, D.J. Thermo- and pH-sensitive Behavior of Hydrogels Based on Oligo (Ethylene Glycol) Methacrylates and Acrylic Acid. J Mater Sci. 2012, 47, 1280–1288. https://doi.org/10.1007/s10853-011-5901-1
[42] Chen, Y.; Sun, P. pH-Sensitive Polyampholyte Microgels of Poly(Acrylic Acid-co-Vinylamine) as Injectable Hydrogel for Controlled Drug Release. Polymers 2019, 11, 285. https://doi.org/10.3390/polym11020285
[43] Tomar, N.; Tomar, M.; Nagaich, U. pHEMA Hydrogels: Devices for Ocular Drug Delivery. Int. J. Health Allied Sci. 2012, 1, 224–230. https://www.ijhas.in/text.asp?2012/1/4/224/107844
[44] Goyal, P.; Dhar, R.; Sagiri, S.; Uvanesh, K.; Senthilguru, K.; Shankar, G.; Samal, A.; Pramanik, K.; Banerjee, I.; Ray, S.S.; et al. Synthesis and Characterization of Novel Dual Environment-Responsive Hydrogels of Hydroxyethyl Methacrylate and Methyl Cellulose. Des. Monomers Polym. 2015, 18, 367–377. https://doi.org/10.1080/15685551.2015.1012626
[45] Musgrave, C.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. https://doi.org/10.3390/ma12020261
[46] Ferreira, L.; Vidal, M.; Gil, M.H. Evaluation of Poly(2-Hydroxyethyl Methacrylate) Gels as Drug Delivery Systems at Different pH Values. Int. J. Pharm. 2000, 194, 169–180.https://doi.org/10.1016/S0378-5173(99)00375-0
[47] Saini, R.K.; Bagri, L.P.; Bajpai, A.K. Poly (2-hydroxyethyl methacrylate) (PHEMA) Based Nanoparticles for Drug Delivery Applications: A review. Nano Sci. and Nano Technol.: An Indian J. 2014, 8, 416–427. https://doi.org/10.1007/978-1-61779-953-2_26
[48] Passos, M.F.; Carvalho, N.M.S.; Rodrigues, A.A.; Bavaresco, V.P.; Jardini, A.L.; Maciel, M.R.W.; Filho, R.M. PHEMA Hydrogels Obtained by Infrared Radiation for Cartilage Tissue Engineering. Int. J. Chem. Eng. 2019, 2019, 1–9. https://doi.org/10.1155/2019/4249581
[49] Zare, M.; Bigham, A.; Zare, M.; Luo, H.; Rezvani Ghomi, E.; Ramakrishna, S. pHEMA: An Overview for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 6376. https://doi.org/10.3390/ijms22126376
[50] Horak, D.; Lednicky, F.; Bleha, M. Effect of Inert Components on the Porous Structure of 2-Hydroxyethyl Methacrylate-Ethylene Dimethacrylate Copolymers. Polymer 1996, 37, 4243–4249. https://doi.org/10.1016/0032-3861(96)00259-5
[51] Paljevac, M.; Krajnc, P.; Hanková, L.; Holub, L.; Droumaguet, B. L.; Grande, D.; Jeřábek, K. Two-Step Syneretic Formation of Highly Porous Morphology during Copolymerization of Hydroxyethyl Methacrylate and Ethylene Glycol Dimethylacrylate. Mater. Today Commun. 2016, 7, 16–21. https://doi.org/10.1016/j.mtcomm.2016.02.004
[52] Reyes, P.; Edeleva, M.; D’hooge, D.R.; Cardon, L.; Cornillie, P. Combining Chromatographic, Rheological, and Mechanical Analysis to Study the Manufacturing Potential of Acrylic Blends into Polyacrylic Casts. Materials 2021, 14, 6939. https://doi.org/10.3390/ma14226939
[53] Xiao, J.; Lu, Q.; Cong, H.; Shen, Y.; Yu, B. Microporous Poly(Glycidyl Methacrylate-co-Ethylene Glycol Dimethyl Acrylate) Microspheres: Synthesis, Functionalization and Applications. Polym. Chem. 2021, 12, 6050–6070. https://doi.org/10.1039/d1py00834j
[54] Kierys, A.; Grochowicz, M.; Kosik, P. The release of Ibuprofen Sodium Salt from Permanently Porous Poly(Hydroxyethyl Methacrylate-co-trimethylolpropane Trimethacrylate) Resins. Microporous Mesoporous Mater. 2015, 217, 133–140. https://doi.org/10.1016/j.micromeso.2015.06.009
[55] Svec, F.; Labsky, J.; Lanyova, L.; Hradil, J.; Pokorny, S.; Kalal, J. Reactive polymers. The Synthesis of 2-Hydroxypropylene Dimethacrylate in a Mixture with Glycidyl Methacrylate and their Copolymerization to a Macroporous Product. Angew. Makromol. Chem. 1980, 90, 47–55. https://doi.org/10.1002/apmc.1980.050900105
[56] Horak, D.; Labsky, J. A Novel Hydrophilic Crosslinker in Preparation of Hydrophilic Sorbents. React. Polym. 1997, 32, 277–280. https://doi.org/10.1016/S1381-5148(97)00010-2
[57] Kotha, A.; Raman, R.; Ponrathnam, S.; Kumar, K.; Shewale, J. Beaded Reactive Polymers. 3. Effect of Triacrylates as Crosslinkers on the Physical Properties of Glycidyl Methacrylate Copolymers and Immobilization of penicillin G acylase. Appl. Biochem. Biotechnol. 1998, 74, 191–203. https://doi.org/10.1007/BF02825965
[58] Norhayati, A.; Mohammad Zuhaili, Y.; Rabiatuladawiah, M. Synthesis and Characterization of poly(HEMA-co-EGDMA-co-VBC) by Modified Suspension Polymerization: Effects of Polymerization Parameters Reaction on Chemical and Thermal Properties of Polymer. Mater. Today: Proc. 2018, 5, 22010–22019. https://doi.org/10.1016/j.matpr.2018.07.062
[59] Jayakrishnan, A.; Thanoo, B. C. Suspension Polymerization of 2-Hydroxyethyl Methacrylate in the Presence of Polymeric Diluents: A Novel Route to Spherical Highly Porous Beads for Biomedical Applications. J. Biomed. Mater. Res. 1990, 24, 913–927. https://doi.org/10.1002/jbm.820240709
[60] Madkour, M.; Bumajdad, A.; & Al-Sagheer, F. To what extent do polymeric stabilizers affect nanoparticles characteristics? Adv. Colloid Interface Sci. 2019, 270, 38–53. https://doi.org/10.1016/j.cis.2019.05.004
[61] Horak, D.; Pelzbauer, Z.; Svec F., Kalal, J. Reactive Polymers. 3. The Influence of the Suspension Stabilizer on the Morphology of a Suspension Polymer. J. Appl. Polym. Sci. 1981, 26, 3205–3211. https://doi.org/10.1002/app.1981.070261002
[62]. Rienda, J. M. Release of Gentamicin Sulphate from a Modified Commercial Bone Cement. Effect of (2-Hydroxyethyl Methacrylate) Comonomer and poly(N-vinyl-2-pyrrolidone) Additive on Release Mechanism and Kinetics. Biomater. 2002, 23, 3787–3797. https://doi.org/10.1016/s0142-9612(02)00028-5
[63]. Puig, J E.; Mendizabal, E. Suspension Polymerization. In Polymeric Materials Encyclopedia; CRC Press, New York, 1996; pp 8215–8220. https://doi.org/10.1201/9780367811686
[64] Vatankhah, Z.; Dehghani, E.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. One-Step Fabrication of Low Cytotoxic Anisotropic Poly(2-Hydroxyethyl Methacrylate-co-Methacrylic Acid) Particles for Efficient Release of DOX. J Drug Deliv Sci Tec. 2019, 54, 101332. https://doi.org/10.1016/j.jddst.2019.101332
[65] Raoufinia, R.; Mota, A.; Keyhanvar, N.; Safari, F.; Shamekhi, S.; Abdolalizadeh, J. Overview of Albumin and Its Purification Methods. Adv. Pharm. Bull. 2016, 6, 495–507. https://doi.org/10.15171/apb.2016.063
[66] Horák, D.; Hlídková, H.; Kit, Y.; Antonyuk, V.; Myronovsky, S.; Stoika, R. Magnetic Poly(2-Hydroxyethyl Methacrylate) Microspheres for Affinity Purification of Monospecific anti-p46 kDa/Myo1C Antibodies for Early Diagnosis of Multiple Sclerosis Patients. Biosci. Rep. 2017, 37, BSR20160526. https://doi.org/10.1042/BSR20160526
[67] Kayhan, C.T.; Ural, F.Z.; Koruyucu, M.; Salman, Y.; Uygun, M.; Uygun, D.A.; Akgöl, S.; Denizli, A. DNA Isolation by Galactoacrylate-Based nano-poly(HEMA- co -Gal-OPA) Nanopolymers. J. Biomater. Sci. Polym. Ed. 2017, 28, 1469–1479. https://doi.org/10.1080/09205063.2017.1330587
[68] Roointan, A.; Farzanfar, J.; Samani, S.M.; Behzad-Behbahani, A.; Farjadian, F. Smart pH Responsive Drug Delivery System Based on Poly(HEMA-co-DMAEMA) Nanohydrogel. Int. J. Pharm. 2018, 552, 301–311. https://doi.org/10.1016/j.ijpharm.2018.10.001
[69] Yu, B.; Song, N.; Hu, H.; Chen, G.; Shen, Y.; Cong, H. A Degradable Triple Temperature-, pH-, and Redox-Responsive Drug System for Cancer Chemotherapy. J Biomed Mater Res A 2018, 106, 3203–3210. https://doi.org/10.1002/jbm.a.36515
[70] Rapado, M.; Peniche, C. Synthesis and Characterization of pH and Temperature Responsive Poly(2-Hydroxyethyl Methacrylate-co-Acrylamide) Hydrogels. Polímeros 2015, 25, 547–555. https://doi.org/10.1590/0104-1428.2097
[71] Parilti, R.; Castañon, A.; Lansalot, M.; D'Agosto, F.; Jérôme, Ch.; Howdle, S. M. Hydrocarbon Based Stabilisers for the Synthesis of Cross-Linked Poly(2-Hydroxyethyl Methacrylate) Particles in Supercritical Carbon Dioxide. Polym. Chem. 2019, 10, 5760–5770. https://doi.org/10.1039/C9PY00998A
[72] Horak, D.; Svec, F.; Gumargalieva, K.Z.; Adamyan, A.A.; Skuba. N.D.; Titova, M.I.; Trostenyuk, N.V. Hydrogels in Endovascular Embolization. I. Spherical Particles of Poly(2-Hydroxyethyl Methacrylate) and their Medico-Biological Properties. Biomaterials 1986, 7, 188–192. https://doi.org/10.1016/0142-9612(86)90100-6
[73] Horák, D.; Metalová, M.; Švec, F.; Drobník, J.; Kálal, J.; Borovička, M.; Adamyan, A.A.; Voronkova, O.S.; Gumargalieva, K.Z. Hydrogels in Endovascular Embolization. III. Radiopaque Spherical Particles, their Preparation and Properties. Biomaterials 1987, 8, 142–145. https://doi.org/10.1016/0142-9612(87)901049
[74] Gugoasa, A.I.; Racovita, S.; Vasiliu, S.; Popa, M. Grafted Microparticles Based on Glycidyl Methacrylate, Hydroxyethyl Methacrylate and Sodium Hyaluronate: Synthesis, Characterization, Adsorption and Release Studies of Metronidazole. Polymers 2022, 14, 4151. https://doi.org/10.3390/polym14194151
[75] Nart, Z.; Kayaman-Apohan, N. Preparation, Characterization and Drug Release Behavior of Poly(Acrylic Acid–co-2-Hydroxyethyl Methacrylate-co-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Microgels. J. Polym. Res. 2011, 18, 869–874. https://doi.org/10.1007/s10965-010-9483-4
[76] Bardakci, F.; Kusat, K.; Adnan, M.; Badraoui, R.; Alam, M.J.; Alreshidi, M.M.; Siddiqui, A.J.; Sachidanandan, M.; Akgöl, S. Novel Polymeric Nanomaterial Based on Poly(Hydroxyethyl Methacrylate-Methacryloylamidophenylalanine) for Hypertension Treatment: Properties and Drug Release Characteristics. Polymers 2022, 14, 5038. https://doi.org/10.3390/polym14225038
[77] Seeli, S.; Prabaharan, M. Guar Gum Oleate-graft-poly(methacrylic Acid) Hydrogel as a Colon-Specific Controlled Drug Delivery Carrier. Carbohydr. Polym. 2017, 158, 51–57. https://doi.org/10.1016/j.carbpol.2016.11.092
[78] Bajpai A.; Gupta MK, Bajpai J. The Biocompatibility and Water Uptake Behavior of Superparamagnetic Poly (2-Hydroxyethylmethacrylate) Magnetite Nanocomposites as Possible Nanocarriers for Magnetically Mediated Drug Delivery System. J Polym. Res. 2014, 21, 518. https://doi.org/10.1007/s10965-014-0518-0
[79] Chouhan, R.; Bajpai, A. An in vitro Release Study of 5-Fluoro-uracil (5-FU) from Swellable Poly-(2-Hydroxyethyl Methacrylate) (PHEMA) Nanoparticles. J. Mater. Sci. Mater. Med. 2009, 20, 1103–1114. https://doi.org/10.1007/s10856-008-3677-x
[80] Pradeepkumar, P.; Subbiah, A.; Rajan, M. Synthesis of Bio-Degradable Poly (2-Hydroxyethyl Methacrylate) Using Natural Deep Eutectic Solvents for Sustainable Cancer Drug Delivery. SN Appl. Sci. 2019, 1, 568. https://doi.org/10.1007/s42452-019-0591-4
[81] Kumar, S.S.D.; Surianarayanan, M.; Vijayaraghavan, R.; Mandal, A.B.; MacFarlane, D.R. Curcumin loaded Poly (2- Hydroxyethyl Methacrylate) Nanoparticles from Gelled Ionic Liquid - In vitro Cytotoxicity and Anti-Cancer Activity in SKOV-3 Cells. Eur. J. Pharm. Sci. 2014, 51, 34–44. https://doi.org/10.1016/j.ejps.2013.08.036
[82] Guo, J.; Hong, H.; Chen, G.; Shi, S.; Nayak, T.R.; Theuer, C.P.; Barnhart, T.E.; Cai, W.; Gong, S. Theranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging. ACS Appl. Mater. Interfaces 2014, 6, 21769–21779. https://doi.org/10.1021/am5002585
[83] Aeinehvand, R.; Zahedi, P.; Kashani-Rahimi, S.; Fallah-Darrehchi, M.; Shamsi, M. Synthesis of Poly(2-hydroxyethyl methacrylate)-based Molecularly Imprinted Polymer Nanoparticles Containing Timolol Maleate: Morphological, Thermal, and Drug Release Along With Cell Biocompatibility Studies. Polym. Adv. Technol. 2017, 28, 828–841. https://doi.org/10.1002/pat.3986
[84] Horak, D.; Semenyuk, N.; Lednicky, F. Effect of the Reaction Parameters on the Particle Size in the Dispersion Polymerization of 2-Hydroxyethyl and Glycidyl Methacrylate in the Presence of a Ferrofluid. J. Polym. Sci. A Polym. Chem. 2003, 41, 1848–1863. https://doi.org/10.1002/pola.10728
[85] Suberlyak, O.; Skorokhoda, V.; Semenyuk, N.; Melnyk, Y. Biomedical materials based on polyvinylpyrrolidone (co)polymers; Lviv Polytechnic Publishing House, 2015. https://vlp.com.ua/node/13933
[86] Buhler, V. Kollidon: Polyvinylpyrrolidone Excipients for the Pharmaceuticals; Ludwigshafen, Germany: BASF, 2008.
[87] Melnyk, Y.; Stetsyshyn, Y.; Skorokhoda, V.; Nastishin, Y., Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) Hydrogel Membranes for Encapsulated Forms of Drugs. J. Polym. Res. 2020, 27, 354. https://doi.org/10.1007/s10965-020-02335-7
[88] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Spišák, E.; Gajdoš, I. Features of Structure and Properties of PHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13, 1–15. https://doi.org/10.3390/ma13204580
[89] Skorokhoda, V.; Dziaman, I.; Dudok, G.; Bratychak, M.; Semenyuk, N. The Ultrasonic Effect On Obtaining And Properties Of Osteoplastic Porous Composites. Chem.Chem.Technol. 2019, 13, 429–435. https://doi.org/10.23939/chcht13.04.429
[90] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Levytska, Kh.; Dudok, G. The Influence of the Nature of a Calcium-Containing Filler on the Preparation and Properties of Osteoplastic Porous Composites. Voprosy Khimii i Khim. Tekhnologii 2018, 2, 101–108.
[91] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Ortynska, N.; Suberlyak, O. Film hydrogels on the basis of polyvinylpyrrolidone copolymers with regulated sorption-desorption characteristics. Chem. Chem.Technol. 2017, 11, 171–174. https://doi.org/10.23939/chcht11.02.171
[92] Skorokhoda, V.; Melnyk, Y.; Shalata, V.; Skorokhoda, T.; Suberlyak, O. An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. East.Eur.J. Enterp. Technol. 2017, 1(6, 85), 50–55. https://doi.org/10.15587/1729-4061.2017.92368
[93] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Suberlyak, O. Mineral Filled Porous Composites Based On Polyvinylpyrrolidone Copolymers with Bactericidal Properties. Chem.Chem.Technol. 2016, 10, 187–192. https://doi.org/10.23939/chcht10.02.187
[94] Suberlyak, O.V.; Melnyk, Y.Y.; Skorokhoda, V.I. Regularities of preparation and properties of hydrogel membranes. Mater. Sci. 2015, 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8
[95] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Suberlyak, O. Obtaining peculiarities and properties of polyvinylpyrrolidone сopolymers with hydrophobic vinyl monomers. Chem.Chem.Technol. 2015, 9, 55–59. https://doi.org/10.23939/chcht09.01.055
[96] Semenyuk, N.; Kostiv, U.; Suberlyak, O.; Skorokhoda, V. Peculiarities of filled porous hydrogels production and properties. Chem.Chem.Technol. 2013, 7, 95–99. https://doi.org/10.23939/chcht07.01.095
[97] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Suberlyak, O. Structure controlled formation and properties of highly hydrophilic membranes based on polyvinylpyrrolidone copolymers. Chem.Chem.Technol. 2012, 6, 301–305. https://doi.org/10.23939/chcht06.03.301
[98] Skorokhoda, V.J.; Semenyuk, N.B.; Dudok, G.D.; Kysil, H.V. Silver-containing Osteoplastic Nanocomposites Based on Polyvinylpyrrolidone Copolymers. Voprosy Khimii i Khim. Tekhnologii 2022, 3, 67–73. http://dx.doi.org/10.32434/0321-4095-2022-142-3-67-73
[99] Skorokhoda, V.; Semenyuk, N.; Suberlyak, O. Technological Aspects of Obtaining Spherical Granules of Copolymers of Hydroxyethyl Methacrylate with Polyvinylpyrrolidone. Voprosy Khimii i Khim. Tekhnologii 2004, 3, 88–91.
[100] Suberlyak, O.; Semenyuk, N.; Skorokhoda, V. Peculiarities of Obtaining HEMA Granular Copolymers from PVP. Khim. Prom. Ukr. 2002, 3, 30–34.
[101] Semenyuk, N.; Dudok, G.; Suberlyak, O.; Skorokhoda, V. The Suspension Polymerization Regularities of Glycidyl Methacrylate in Presence of Polyvinylpyrrolidone. Voprosy Khimii i Khim. Tekhnologii 2011, 2, 54–59.
[102] Skorokhoda, V.; Semenyuk, N.; Lukan, G.; Suberlyak, O. The Influence of Technological Parameters on the Regularities of Synthesis of Polyvinylpirrolidone Hydrophilic Granular Copolymers. Voprosy Khimii i Khim. Tekhnologii 2006, 3, 67–71.
[103] Semenyuk, N.; Dudok, G.; Chopyk, N.; Skorokhoda, V. Kinetic Features of Dispersion Polymerization of HEMA Compositions with PVP. Visnyk Nats. Univ. “Lvivska Politechnika” 2010, 667, 456–459.
[104]. Suberlyak, O.; Gudzera, S.; Skorokhoda, V. Peculiarities of HEMA Polymerization in Polar Solvents in the Presence of PVP. Dopovidi AN URSR 1986, 7, 49–51.
[105] Skorokhoda, V.; Semenyuk, N.; Melnyk, J.; Suberlyak, O. Hydrogels Penetration and Sorption Properties in the Substances Release Controlled Processes. Chem.Chem.Technol. 2009, 3, 117–121. https://doi.org/10.23939/chcht03.02.117
[106] Semenyuk, N.; Kohut, О.; Chernygevych, І.; Neboga, G.; Skorokhoda, V. The Features of Obtaining of Spherical Hydrogels for Drug Delivery Systems. Visnyk Nats. Univ. “Lvivska Politechnika” 2015, 812, 404–408. http://nbuv.gov.ua/UJRN/VNULPX_2015_812_71