Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Hydrogels in Biomedicine: Granular Controlled Release Systems Based on 2-Hydroxyethyl Methacrylate Copolymers. A Review

Nataliya Semenyuk1, Galyna Dudok1, Volodymyr Skorokhoda1
Affiliation: 
1 Lviv Polytechnic National University, 12 Bandery St., 79013 Lviv, Ukraine vskorohoda@yahoo.com
DOI: 
https://doi.org/10.23939/chcht18.02.143
AttachmentSize
PDF icon full_text.pdf498.38 KB
Abstract: 
The article analyzes and summarizes the latest achievements in the field of polymer systems for controlled release devices based on hydrogel materials. Possible directions of drug delivery are presented, including the use of granular hydrogels, which work on the principle of drug sorption − release in the body. The research on the synthesis regularities, structure, properties, and prospects for the use of granular hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and its copolymers, in particular with polyvinylpyrrolidone (PVP), as systems for the controlled release of substances, in particular, drugs, is analyzed.
References: 

[1] Campbell, S.; Smeets, N. Drug Delivery: Polymers in the Development of Controlled Release Systems. In Functional Polymers. Polymers and Polymeric Composites: A Reference Series; Springer, Cham., 2019; pp 1–29. https://doi.org/10.1007/978-3-319-92067-2_20-1
[2] Giammona, G.; Craparo, E.F. Polymer-Based Systems for Controlled Release and Targeting of Drugs. Polymer 2019, 11, 2066. https://doi.org/10.3390/polym11122066
[3] Suberlyak, O.; Skorokhoda, V.; Semenyuk, N.; Lukan, G.; Chopyk, N. Microspheric Hydrogel Polymers as Effective Drug Delivery Systems. Czasopismo techniczne 2006, 6-M, 463–466. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article...
[4] Benoit, D.S.W.; Overby, C.T.; Sims Jr, K.R.; Ackun-Farmmer, M.A. 2.5.12 - Drug delivery systems; Biomaterials Science. In Biomaterials Science; Eds. Academic Press, 2020; pp 1237–1266. https://doi.org/10.1016/B978-0-12-816137-1.00078-7
[5] Sánchez, A.; Mejía, S.P.; Orozco, J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020, 25, 3760. https://doi.org/10.3390/molecules25163760
[6] Miladi K.; Ibraheem D.; Iqbal M.; Sfar S.; Fessi H.; Elaissari A. Particles from Preformed Polymers as Carriers for Drug Delivery. EXCLI J. 2014, 13, 28–57. https://doi.org/10.17877/DE290R-15560
[7] Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. https://doi.org/10.3390/gels9070523
[8] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels; Haider, S.; Haider, A., Eds.; IntechOpen; London, 2018; pp 136–214. https://doi.org/10.5772/intechopen.72082
[9] Zhang, W.; Chen, S.; Jiang, W.; Zhang, Q.; Liu, N.; Wang, Z.; Li, Z.; Zhang, D. Double-Network Hydrogels for Biomaterials: Structure-Property Relationships and Drug Delivery. Eur. Polym. J. 2023, 185, 111807. https://doi.org/10.1016/j.eurpolymj.2022.111807
[10] Drury, J.L.; Mooney, D.J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomater. 2003, 24, 4337–4351. https://doi.org/10.1016/s0142-9612(03)00340-5
[11] Lin, C.; Anseth, K. PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharm. Res. 2009, 26, 631–643. https://doi.org/10.1007/s11095-008-9801-2
[12] Slaughter, B.V.; Khurshid, S.S.; Omar, Z.F.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. J. Adv. Mater. 2009, 21, 3307–3329. https://doi.org/10.1002/adma.200802106
[13] Thi, T.T.H.; Laney M.; Zhang, H.; Martinez, F.; Lee, Y.; Jang, Y. C. Designing Biofunctional Hydrogels for Stem Cell Biology and Regenerative Medicine Applications. J. Ind. Eng. Chem. 2024, 129, 69–104. https://doi.org/10.1016/j.jiec.2023.08.042
[14] Toh, W.S.; Loh, X.J. Advances in Hydrogel Delivery Systems for Tissue Regeneration. Mater. Sci. Eng. C 2014, 45, 690–697. https://doi.org/10.1016/j.msec.2014.04.026
[15] Ji, D.Y.; Kuo, T.F.; Wu, H.D.; Yang, J.C.; Lee, S.Y. A Novel Injectable Chitosan/Polyglutamate Polyelectrolyte Complex Hydrogel with Hydroxyapatite for Soft-Tissue Augmentation. Carbohydr. Polym. 2012, 89, 1123–1130. https://doi.org/10.1016/j.carbpol.2012.03.083
[16] Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel Machines. Mater. Today 2020, 36, 102–124. https://doi.org/10.1016/j.mattod.2019.12.026
[17] Mahinroosta, M.; Farsangi, Z. J.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42–55. https://doi.org/10.1016/j.mtchem.2018.02.004
[18] Mehta P.; Sharma, M.; Devi, M. Hydrogels: An Overview of its Classifications, Properties, and Applications. J. Mech. Behav. Biomed. Mater. 2023, 147, 106145. https://doi.org/10.1016/j.jmbbm.2023.106145
[19] Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng.: C 2017, 79, 958–971. https://doi.org/10.1016/j.msec.2017.05.096
[20] Kapate N.; Clegg J. R.; Mitragotri S. Non-Spherical Micro- and Nanoparticles for Drug Delivery: Progress over 15 Years. Adv. Drug Deliv. Rev. 2021, 177, 113807. https://doi.org/10.1016/j.addr.2021.05.017
[21] Wang, L.; Li, L.; Sun, Y.; Ding, J.; Li, J.; Duan, X.; Li, Y.; Junyaprasert, V.B.; Mao, S. In vitro and in vivo Evaluation of Chitosan Graft Glyceryl Monooleate as Peroral Delivery Carrier of Enoxaparin. Int. J. Pharm. 2014, 471, 391–399. https://doi.org/10.1016/j.ijpharm.2014.05.050
[22] Motlekar, N.A.; Youan, B.B.C. The Quest for Non-Invasive Delivery of Bioactive Macromolecules: A Focus on Heparins. J. Control Release 2006, 113, 91–101. https://doi.org/10.1016/j.jconrel.2006.04.008
[23] Lai, W. F.; He, Z. D. Design and Fabrication of Hydrogel-Based Nanoparticulate Systems for in vivo Drug Delivery. J. Control Release 2016, 243, 269–82. https://doi.org/10.1016/j.jconrel.2016.10.013
[24] Akgöl, S.; Öztürk, N.; Denizli, A. New Generation Polymeric Nanospheres for Catalase Immobilization. J. Appl. Polym. Sci. 2009, 114, 962–970. https://doi.org/10.1002/app.29790
[25] Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20. https://doi.org/10.3390/scipharm87030020
[26] Zhang, Y.; Huang, Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front. Chem. 2021, 8, 6156565. https://doi.org/10.3389/fchem.2020.615665]
[27] Brooks, B.W. Suspension Polymerization Processes. Chem. Eng. Technol. 2010, 33, 1737–1744. https://doi.org/10.1002/ceat.201000210
[28] Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical Applications of Hydrogels in Drug Delivery System: An Update. J. Drug Deliv. Sci. Technol. 2021, 66, 102914. https://doi.org/10.1016/j.jddst.2021.102914
[29] Gelli, R.; Mugnaini, G.; Bolognesi, T.; Bonini, M. Cross-Linked Porous Gelatin Microparticles with Tunable Shape, Size and Porosity. Langmuir 2021, 37, 12781–12789. https://doi.org/10.1021/acs.langmuir.1c01508
[30] Quadrado, R.F.N.; Fajardo, A.R. Microparticles Based on Carboxymethyl Starch/Chitosan Polyelectrolyte Complex as Vehicles for Drug Delivery Systems. Arab. J. Chem. 2020, 13, 2183–2194. https://doi.org/10.1016/j.arabjc.2018.04.004
[31] Goyal, P. K.; Khurana, S.; Mittal, A. Hydrogel-Bound Cytotoxic Drug Delivery System for Breast Cancer. Health Sci. Rev. 2023, 9, 100140. https://doi.org/10.1016/j.hsr.2023.100140
[32] Holcapkova, P.; Hrabalikova, M.; Stoplova, P.; Sedlarik, V. Core-Shell PLA-PVA Porous Microparticles as Carriers for Bacteriocin Nisin. J. Microencapsul. 2017, 34, 243–249. https://doi.org/10.1080/02652048.2017.1324919
[33] Peterson, T.E.; Gigliobianco, G.; Sherborne, C.; Green, N.H.; Dugan, J.M.; MacNeil, S.; Reilly, G.C.; Claeyssens, F. Porous Microspheres Support Mesemchymal Progenitor Cell Ingrowth and Stimulate Angiogenesis. APL Bioeng. 2018,2, 026103. https://doi.org/10.1063/1.5008556
[34] Ray, P.; Maity, M.; Barik, H.; Sahoo, G. S.; Hasnain, M. S.; Hoda, M. N.; Nayak, A. K. Chapter 3 - Alginate-Based Hydrogels for Drug Delivery Applications. In Alginates in Drug Delivery; Academic Press, 2020; pp 41–70. https://doi.org/10.1016/B978-0-12-817640-5.00003-0
[35] Ai, Y.; Lin, Zh.; Zhao, W.; Cui, M.; Qi, W.; Huang, R.; Su, R. Nanocellulose-Based Hydrogels for Drug Delivery. J. Mater. Chem. B 2023, 30, 7004–7023. https://doi.org/10.1039/D3TB00478C
[36] Park, J.; Lim, Y.; Baik, J.J.; Jeong, J.; An, S.; Jeong, S.I.; Gwon, H.; & Khil, M.S. Preparation and Evaluation of β-Glucan Hydrogel Prepared by the Radiation Technique for Drug Carrier Applications. Int. J. Biol. Macromol. 2018, 118, 333–339. https://doi.org/10.1016/j.ijbiomac.2018.06.068
[37] Chen, L.; Deng, X.; Tian, L.; Xie,J.; Xiang, Y.; Liang, X.; Jiang, L.; Jiang, L. Preparation and Properties of Chitosan/Dialdehyde Sodium Alginate/Dopamine Magnetic Drug-Delivery Hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 13273. https://doi.org/10.1016/j.colsurfa.2023.132739
[38] Auriemma, G.; Russo, P.; Del Gaudio, P.; García-González, C.A.; Landín, M.; Aquino, R.P. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules 2020, 25, 3156. https://doi.org/10.3390/molecules25143156
[39] Drăgan, E.S.; Cocarta, A.I.; Gierszewska, M. Designing Novel Macroporous Composite Hydrogels Based on Methacrylic Acid Copolymers and Chitosan and in vitro Assessment of Lysozyme Controlled Delivery. Colloids Surf. B 2016, 139, 33–41. https://doi.org/10.1016/j.colsurfb.2015.12.011
[40] Jing, Z.; Zhang, G.; Sun, X.F.; Shi, X.; Sun, W. Preparation and Adsorption Properties of a Novel Superabsorbent Based on Multiwalled Carbon Nanotubes–Xylan Composite and Poly(Methacrylic Acid) for Methylene Blue from Aqueous Solution. Polym. Compos. 2014, 35, 1516. https://doi.org/10.1002/pc.22805
[41] Wang, Y.; Yuan, Z.C.; Chen, D.J. Thermo- and pH-sensitive Behavior of Hydrogels Based on Oligo (Ethylene Glycol) Methacrylates and Acrylic Acid. J Mater Sci. 2012, 47, 1280–1288. https://doi.org/10.1007/s10853-011-5901-1
[42] Chen, Y.; Sun, P. pH-Sensitive Polyampholyte Microgels of Poly(Acrylic Acid-co-Vinylamine) as Injectable Hydrogel for Controlled Drug Release. Polymers 2019, 11, 285. https://doi.org/10.3390/polym11020285
[43] Tomar, N.; Tomar, M.; Nagaich, U. pHEMA Hydrogels: Devices for Ocular Drug Delivery. Int. J. Health Allied Sci. 2012, 1, 224–230. https://www.ijhas.in/text.asp?2012/1/4/224/107844
[44] Goyal, P.; Dhar, R.; Sagiri, S.; Uvanesh, K.; Senthilguru, K.; Shankar, G.; Samal, A.; Pramanik, K.; Banerjee, I.; Ray, S.S.; et al. Synthesis and Characterization of Novel Dual Environment-Responsive Hydrogels of Hydroxyethyl Methacrylate and Methyl Cellulose. Des. Monomers Polym. 2015, 18, 367–377. https://doi.org/10.1080/15685551.2015.1012626
[45] Musgrave, C.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. https://doi.org/10.3390/ma12020261
[46] Ferreira, L.; Vidal, M.; Gil, M.H. Evaluation of Poly(2-Hydroxyethyl Methacrylate) Gels as Drug Delivery Systems at Different pH Values. Int. J. Pharm. 2000, 194, 169–180.https://doi.org/10.1016/S0378-5173(99)00375-0
[47] Saini, R.K.; Bagri, L.P.; Bajpai, A.K. Poly (2-hydroxyethyl methacrylate) (PHEMA) Based Nanoparticles for Drug Delivery Applications: A review. Nano Sci. and Nano Technol.: An Indian J. 2014, 8, 416–427. https://doi.org/10.1007/978-1-61779-953-2_26
[48] Passos, M.F.; Carvalho, N.M.S.; Rodrigues, A.A.; Bavaresco, V.P.; Jardini, A.L.; Maciel, M.R.W.; Filho, R.M. PHEMA Hydrogels Obtained by Infrared Radiation for Cartilage Tissue Engineering. Int. J. Chem. Eng. 2019, 2019, 1–9. https://doi.org/10.1155/2019/4249581
[49] Zare, M.; Bigham, A.; Zare, M.; Luo, H.; Rezvani Ghomi, E.; Ramakrishna, S. pHEMA: An Overview for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 6376. https://doi.org/10.3390/ijms22126376
[50] Horak, D.; Lednicky, F.; Bleha, M. Effect of Inert Components on the Porous Structure of 2-Hydroxyethyl Methacrylate-Ethylene Dimethacrylate Copolymers. Polymer 1996, 37, 4243–4249. https://doi.org/10.1016/0032-3861(96)00259-5
[51] Paljevac, M.; Krajnc, P.; Hanková, L.; Holub, L.; Droumaguet, B. L.; Grande, D.; Jeřábek, K. Two-Step Syneretic Formation of Highly Porous Morphology during Copolymerization of Hydroxyethyl Methacrylate and Ethylene Glycol Dimethylacrylate. Mater. Today Commun. 2016, 7, 16–21. https://doi.org/10.1016/j.mtcomm.2016.02.004
[52] Reyes, P.; Edeleva, M.; D’hooge, D.R.; Cardon, L.; Cornillie, P. Combining Chromatographic, Rheological, and Mechanical Analysis to Study the Manufacturing Potential of Acrylic Blends into Polyacrylic Casts. Materials 2021, 14, 6939. https://doi.org/10.3390/ma14226939
[53] Xiao, J.; Lu, Q.; Cong, H.; Shen, Y.; Yu, B. Microporous Poly(Glycidyl Methacrylate-co-Ethylene Glycol Dimethyl Acrylate) Microspheres: Synthesis, Functionalization and Applications. Polym. Chem. 2021, 12, 6050–6070. https://doi.org/10.1039/d1py00834j
[54] Kierys, A.; Grochowicz, M.; Kosik, P. The release of Ibuprofen Sodium Salt from Permanently Porous Poly(Hydroxyethyl Methacrylate-co-trimethylolpropane Trimethacrylate) Resins. Microporous Mesoporous Mater. 2015, 217, 133–140. https://doi.org/10.1016/j.micromeso.2015.06.009
[55] Svec, F.; Labsky, J.; Lanyova, L.; Hradil, J.; Pokorny, S.; Kalal, J. Reactive polymers. The Synthesis of 2-Hydroxypropylene Dimethacrylate in a Mixture with Glycidyl Methacrylate and their Copolymerization to a Macroporous Product. Angew. Makromol. Chem. 1980, 90, 47–55. https://doi.org/10.1002/apmc.1980.050900105
[56] Horak, D.; Labsky, J. A Novel Hydrophilic Crosslinker in Preparation of Hydrophilic Sorbents. React. Polym. 1997, 32, 277–280. https://doi.org/10.1016/S1381-5148(97)00010-2
[57] Kotha, A.; Raman, R.; Ponrathnam, S.; Kumar, K.; Shewale, J. Beaded Reactive Polymers. 3. Effect of Triacrylates as Crosslinkers on the Physical Properties of Glycidyl Methacrylate Copolymers and Immobilization of penicillin G acylase. Appl. Biochem. Biotechnol. 1998, 74, 191–203. https://doi.org/10.1007/BF02825965
[58] Norhayati, A.; Mohammad Zuhaili, Y.; Rabiatuladawiah, M. Synthesis and Characterization of poly(HEMA-co-EGDMA-co-VBC) by Modified Suspension Polymerization: Effects of Polymerization Parameters Reaction on Chemical and Thermal Properties of Polymer. Mater. Today: Proc. 2018, 5, 22010–22019. https://doi.org/10.1016/j.matpr.2018.07.062
[59] Jayakrishnan, A.; Thanoo, B. C. Suspension Polymerization of 2-Hydroxyethyl Methacrylate in the Presence of Polymeric Diluents: A Novel Route to Spherical Highly Porous Beads for Biomedical Applications. J. Biomed. Mater. Res. 1990, 24, 913–927. https://doi.org/10.1002/jbm.820240709
[60] Madkour, M.; Bumajdad, A.; & Al-Sagheer, F. To what extent do polymeric stabilizers affect nanoparticles characteristics? Adv. Colloid Interface Sci. 2019, 270, 38–53. https://doi.org/10.1016/j.cis.2019.05.004
[61] Horak, D.; Pelzbauer, Z.; Svec F., Kalal, J. Reactive Polymers. 3. The Influence of the Suspension Stabilizer on the Morphology of a Suspension Polymer. J. Appl. Polym. Sci. 1981, 26, 3205–3211. https://doi.org/10.1002/app.1981.070261002
[62]. Rienda, J. M. Release of Gentamicin Sulphate from a Modified Commercial Bone Cement. Effect of (2-Hydroxyethyl Methacrylate) Comonomer and poly(N-vinyl-2-pyrrolidone) Additive on Release Mechanism and Kinetics. Biomater. 2002, 23, 3787–3797. https://doi.org/10.1016/s0142-9612(02)00028-5
[63]. Puig, J E.; Mendizabal, E. Suspension Polymerization. In Polymeric Materials Encyclopedia; CRC Press, New York, 1996; pp 8215–8220. https://doi.org/10.1201/9780367811686
[64] Vatankhah, Z.; Dehghani, E.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. One-Step Fabrication of Low Cytotoxic Anisotropic Poly(2-Hydroxyethyl Methacrylate-co-Methacrylic Acid) Particles for Efficient Release of DOX. J Drug Deliv Sci Tec. 2019, 54, 101332. https://doi.org/10.1016/j.jddst.2019.101332
[65] Raoufinia, R.; Mota, A.; Keyhanvar, N.; Safari, F.; Shamekhi, S.; Abdolalizadeh, J. Overview of Albumin and Its Purification Methods. Adv. Pharm. Bull. 2016, 6, 495–507. https://doi.org/10.15171/apb.2016.063
[66] Horák, D.; Hlídková, H.; Kit, Y.; Antonyuk, V.; Myronovsky, S.; Stoika, R. Magnetic Poly(2-Hydroxyethyl Methacrylate) Microspheres for Affinity Purification of Monospecific anti-p46 kDa/Myo1C Antibodies for Early Diagnosis of Multiple Sclerosis Patients. Biosci. Rep. 2017, 37, BSR20160526. https://doi.org/10.1042/BSR20160526
[67] Kayhan, C.T.; Ural, F.Z.; Koruyucu, M.; Salman, Y.; Uygun, M.; Uygun, D.A.; Akgöl, S.; Denizli, A. DNA Isolation by Galactoacrylate-Based nano-poly(HEMA- co -Gal-OPA) Nanopolymers. J. Biomater. Sci. Polym. Ed. 2017, 28, 1469–1479. https://doi.org/10.1080/09205063.2017.1330587
[68] Roointan, A.; Farzanfar, J.; Samani, S.M.; Behzad-Behbahani, A.; Farjadian, F. Smart pH Responsive Drug Delivery System Based on Poly(HEMA-co-DMAEMA) Nanohydrogel. Int. J. Pharm. 2018, 552, 301–311. https://doi.org/10.1016/j.ijpharm.2018.10.001
[69] Yu, B.; Song, N.; Hu, H.; Chen, G.; Shen, Y.; Cong, H. A Degradable Triple Temperature-, pH-, and Redox-Responsive Drug System for Cancer Chemotherapy. J Biomed Mater Res A 2018, 106, 3203–3210. https://doi.org/10.1002/jbm.a.36515
[70] Rapado, M.; Peniche, C. Synthesis and Characterization of pH and Temperature Responsive Poly(2-Hydroxyethyl Methacrylate-co-Acrylamide) Hydrogels. Polímeros 2015, 25, 547–555. https://doi.org/10.1590/0104-1428.2097
[71] Parilti, R.; Castañon, A.; Lansalot, M.; D'Agosto, F.; Jérôme, Ch.; Howdle, S. M. Hydrocarbon Based Stabilisers for the Synthesis of Cross-Linked Poly(2-Hydroxyethyl Methacrylate) Particles in Supercritical Carbon Dioxide. Polym. Chem. 2019, 10, 5760–5770. https://doi.org/10.1039/C9PY00998A
[72] Horak, D.; Svec, F.; Gumargalieva, K.Z.; Adamyan, A.A.; Skuba. N.D.; Titova, M.I.; Trostenyuk, N.V. Hydrogels in Endovascular Embolization. I. Spherical Particles of Poly(2-Hydroxyethyl Methacrylate) and their Medico-Biological Properties. Biomaterials 1986, 7, 188–192. https://doi.org/10.1016/0142-9612(86)90100-6
[73] Horák, D.; Metalová, M.; Švec, F.; Drobník, J.; Kálal, J.; Borovička, M.; Adamyan, A.A.; Voronkova, O.S.; Gumargalieva, K.Z. Hydrogels in Endovascular Embolization. III. Radiopaque Spherical Particles, their Preparation and Properties. Biomaterials 1987, 8, 142–145. https://doi.org/10.1016/0142-9612(87)901049
[74] Gugoasa, A.I.; Racovita, S.; Vasiliu, S.; Popa, M. Grafted Microparticles Based on Glycidyl Methacrylate, Hydroxyethyl Methacrylate and Sodium Hyaluronate: Synthesis, Characterization, Adsorption and Release Studies of Metronidazole. Polymers 2022, 14, 4151. https://doi.org/10.3390/polym14194151
[75] Nart, Z.; Kayaman-Apohan, N. Preparation, Characterization and Drug Release Behavior of Poly(Acrylic Acid–co-2-Hydroxyethyl Methacrylate-co-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Microgels. J. Polym. Res. 2011, 18, 869–874. https://doi.org/10.1007/s10965-010-9483-4
[76] Bardakci, F.; Kusat, K.; Adnan, M.; Badraoui, R.; Alam, M.J.; Alreshidi, M.M.; Siddiqui, A.J.; Sachidanandan, M.; Akgöl, S. Novel Polymeric Nanomaterial Based on Poly(Hydroxyethyl Methacrylate-Methacryloylamidophenylalanine) for Hypertension Treatment: Properties and Drug Release Characteristics. Polymers 2022, 14, 5038. https://doi.org/10.3390/polym14225038
[77] Seeli, S.; Prabaharan, M. Guar Gum Oleate-graft-poly(methacrylic Acid) Hydrogel as a Colon-Specific Controlled Drug Delivery Carrier. Carbohydr. Polym. 2017, 158, 51–57. https://doi.org/10.1016/j.carbpol.2016.11.092
[78] Bajpai A.; Gupta MK, Bajpai J. The Biocompatibility and Water Uptake Behavior of Superparamagnetic Poly (2-Hydroxyethylmethacrylate) Magnetite Nanocomposites as Possible Nanocarriers for Magnetically Mediated Drug Delivery System. J Polym. Res. 2014, 21, 518. https://doi.org/10.1007/s10965-014-0518-0
[79] Chouhan, R.; Bajpai, A. An in vitro Release Study of 5-Fluoro-uracil (5-FU) from Swellable Poly-(2-Hydroxyethyl Methacrylate) (PHEMA) Nanoparticles. J. Mater. Sci. Mater. Med. 2009, 20, 1103–1114. https://doi.org/10.1007/s10856-008-3677-x
[80] Pradeepkumar, P.; Subbiah, A.; Rajan, M. Synthesis of Bio-Degradable Poly (2-Hydroxyethyl Methacrylate) Using Natural Deep Eutectic Solvents for Sustainable Cancer Drug Delivery. SN Appl. Sci. 2019, 1, 568. https://doi.org/10.1007/s42452-019-0591-4
[81] Kumar, S.S.D.; Surianarayanan, M.; Vijayaraghavan, R.; Mandal, A.B.; MacFarlane, D.R. Curcumin loaded Poly (2- Hydroxyethyl Methacrylate) Nanoparticles from Gelled Ionic Liquid - In vitro Cytotoxicity and Anti-Cancer Activity in SKOV-3 Cells. Eur. J. Pharm. Sci. 2014, 51, 34–44. https://doi.org/10.1016/j.ejps.2013.08.036
[82] Guo, J.; Hong, H.; Chen, G.; Shi, S.; Nayak, T.R.; Theuer, C.P.; Barnhart, T.E.; Cai, W.; Gong, S. Theranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging. ACS Appl. Mater. Interfaces 2014, 6, 21769–21779. https://doi.org/10.1021/am5002585
[83] Aeinehvand, R.; Zahedi, P.; Kashani-Rahimi, S.; Fallah-Darrehchi, M.; Shamsi, M. Synthesis of Poly(2-hydroxyethyl methacrylate)-based Molecularly Imprinted Polymer Nanoparticles Containing Timolol Maleate: Morphological, Thermal, and Drug Release Along With Cell Biocompatibility Studies. Polym. Adv. Technol. 2017, 28, 828–841. https://doi.org/10.1002/pat.3986
[84] Horak, D.; Semenyuk, N.; Lednicky, F. Effect of the Reaction Parameters on the Particle Size in the Dispersion Polymerization of 2-Hydroxyethyl and Glycidyl Methacrylate in the Presence of a Ferrofluid. J. Polym. Sci. A Polym. Chem. 2003, 41, 1848–1863. https://doi.org/10.1002/pola.10728
[85] Suberlyak, O.; Skorokhoda, V.; Semenyuk, N.; Melnyk, Y. Biomedical materials based on polyvinylpyrrolidone (co)polymers; Lviv Polytechnic Publishing House, 2015. https://vlp.com.ua/node/13933
[86] Buhler, V. Kollidon: Polyvinylpyrrolidone Excipients for the Pharmaceuticals; Ludwigshafen, Germany: BASF, 2008.
[87] Melnyk, Y.; Stetsyshyn, Y.; Skorokhoda, V.; Nastishin, Y., Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) Hydrogel Membranes for Encapsulated Forms of Drugs. J. Polym. Res. 2020, 27, 354. https://doi.org/10.1007/s10965-020-02335-7
[88] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Spišák, E.; Gajdoš, I. Features of Structure and Properties of PHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13, 1–15. https://doi.org/10.3390/ma13204580
[89] Skorokhoda, V.; Dziaman, I.; Dudok, G.; Bratychak, M.; Semenyuk, N. The Ultrasonic Effect On Obtaining And Properties Of Osteoplastic Porous Composites. Chem.Chem.Technol. 2019, 13, 429–435. https://doi.org/10.23939/chcht13.04.429
[90] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Levytska, Kh.; Dudok, G. The Influence of the Nature of a Calcium-Containing Filler on the Preparation and Properties of Osteoplastic Porous Composites. Voprosy Khimii i Khim. Tekhnologii 2018, 2, 101–108.
[91] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Ortynska, N.; Suberlyak, O. Film hydrogels on the basis of polyvinylpyrrolidone copolymers with regulated sorption-desorption characteristics. Chem. Chem.Technol. 2017, 11, 171–174. https://doi.org/10.23939/chcht11.02.171
[92] Skorokhoda, V.; Melnyk, Y.; Shalata, V.; Skorokhoda, T.; Suberlyak, O. An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. East.Eur.J. Enterp. Technol. 2017, 1(6, 85), 50–55. https://doi.org/10.15587/1729-4061.2017.92368
[93] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Suberlyak, O. Mineral Filled Porous Composites Based On Polyvinylpyrrolidone Copolymers with Bactericidal Properties. Chem.Chem.Technol. 2016, 10, 187–192. https://doi.org/10.23939/chcht10.02.187
[94] Suberlyak, O.V.; Melnyk, Y.Y.; Skorokhoda, V.I. Regularities of preparation and properties of hydrogel membranes. Mater. Sci. 2015, 50, 889–896. https://doi.org/10.1007/s11003-015-9798-8
[95] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Suberlyak, O. Obtaining peculiarities and properties of polyvinylpyrrolidone сopolymers with hydrophobic vinyl monomers. Chem.Chem.Technol. 2015, 9, 55–59. https://doi.org/10.23939/chcht09.01.055
[96] Semenyuk, N.; Kostiv, U.; Suberlyak, O.; Skorokhoda, V. Peculiarities of filled porous hydrogels production and properties. Chem.Chem.Technol. 2013, 7, 95–99. https://doi.org/10.23939/chcht07.01.095
[97] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Suberlyak, O. Structure controlled formation and properties of highly hydrophilic membranes based on polyvinylpyrrolidone copolymers. Chem.Chem.Technol. 2012, 6, 301–305. https://doi.org/10.23939/chcht06.03.301
[98] Skorokhoda, V.J.; Semenyuk, N.B.; Dudok, G.D.; Kysil, H.V. Silver-containing Osteoplastic Nanocomposites Based on Polyvinylpyrrolidone Copolymers. Voprosy Khimii i Khim. Tekhnologii 2022, 3, 67–73. http://dx.doi.org/10.32434/0321-4095-2022-142-3-67-73
[99] Skorokhoda, V.; Semenyuk, N.; Suberlyak, O. Technological Aspects of Obtaining Spherical Granules of Copolymers of Hydroxyethyl Methacrylate with Polyvinylpyrrolidone. Voprosy Khimii i Khim. Tekhnologii 2004, 3, 88–91.
[100] Suberlyak, O.; Semenyuk, N.; Skorokhoda, V. Peculiarities of Obtaining HEMA Granular Copolymers from PVP. Khim. Prom. Ukr. 2002, 3, 30–34.
[101] Semenyuk, N.; Dudok, G.; Suberlyak, O.; Skorokhoda, V. The Suspension Polymerization Regularities of Glycidyl Methacrylate in Presence of Polyvinylpyrrolidone. Voprosy Khimii i Khim. Tekhnologii 2011, 2, 54–59.
[102] Skorokhoda, V.; Semenyuk, N.; Lukan, G.; Suberlyak, O. The Influence of Technological Parameters on the Regularities of Synthesis of Polyvinylpirrolidone Hydrophilic Granular Copolymers. Voprosy Khimii i Khim. Tekhnologii 2006, 3, 67–71.
[103] Semenyuk, N.; Dudok, G.; Chopyk, N.; Skorokhoda, V. Kinetic Features of Dispersion Polymerization of HEMA Compositions with PVP. Visnyk Nats. Univ. “Lvivska Politechnika” 2010, 667, 456–459.
[104]. Suberlyak, O.; Gudzera, S.; Skorokhoda, V. Peculiarities of HEMA Polymerization in Polar Solvents in the Presence of PVP. Dopovidi AN URSR 1986, 7, 49–51.
[105] Skorokhoda, V.; Semenyuk, N.; Melnyk, J.; Suberlyak, O. Hydrogels Penetration and Sorption Properties in the Substances Release Controlled Processes. Chem.Chem.Technol. 2009, 3, 117–121. https://doi.org/10.23939/chcht03.02.117
[106] Semenyuk, N.; Kohut, О.; Chernygevych, І.; Neboga, G.; Skorokhoda, V. The Features of Obtaining of Spherical Hydrogels for Drug Delivery Systems. Visnyk Nats. Univ. “Lvivska Politechnika” 2015, 812, 404–408. http://nbuv.gov.ua/UJRN/VNULPX_2015_812_71