Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Hydrogels in Biomedicine: Granular Controlled Release Systems Based on 2-Hydroxyethyl Methacrylate Copolymers. A Review

Nataliya Semenyuk1, Galyna Dudok1, Volodymyr Skorokhoda1
Affiliation: 
1 Lviv Polytechnic National University, 12 Bandery St., 79013 Lviv, Ukraine vskorohoda@yahoo.com
DOI: 
https://doi.org/10.23939/chcht18.02.143
AttachmentSize
PDF icon full_text.pdf498.38 KB
Abstract: 
The article analyzes and summarizes the latest achievements in the field of polymer systems for controlled release devices based on hydrogel materials. Possible directions of drug delivery are presented, including the use of granular hydrogels, which work on the principle of drug sorption − release in the body. The research on the synthesis regularities, structure, properties, and prospects for the use of granular hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and its copolymers, in particular with polyvinylpyrrolidone (PVP), as systems for the controlled release of substances, in particular, drugs, is analyzed.
References: 

[1] Campbell, S.; Smeets, N. Drug Delivery: Polymers in the Development of Controlled Release Systems. In Functional Polymers. Polymers and Polymeric Composites: A Reference Series; Springer, Cham., 2019; pp 1-29. https://doi.org/10.1007/978-3-319-92067-2_20-1
https://doi.org/10.1007/978-3-319-92067-2_20-1

[2] Giammona, G.; Craparo, E.F. Polymer-Based Systems for Controlled Release and Targeting of Drugs. Polymer 2019, 11, 2066. https://doi.org/10.3390/polym11122066
https://doi.org/10.3390/polym11122066

[3] Suberlyak, O.; Skorokhoda, V.; Semenyuk, N.; Lukan, G.; Chopyk, N. Microspheric Hydrogel Polymers as Effective Drug Delivery Systems. Czasopismo techniczne 2006, 6-M, 463-466. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article...

[4] Benoit, D.S.W.; Overby, C.T.; Sims Jr, K.R.; Ackun-Farmmer, M.A. 2.5.12 - Drug delivery systems; Biomaterials Science. In Biomaterials Science; Eds. Academic Press, 2020; pp 1237-1266. https://doi.org/10.1016/B978-0-12-816137-1.00078-7
https://doi.org/10.1016/B978-0-12-816137-1.00078-7

[5] Sánchez, A.; Mejía, S.P.; Orozco, J. Recent Advances in Polymeric Nanoparticle-Encapsulated Drugs against Intracellular Infections. Molecules 2020, 25, 3760. https://doi.org/10.3390/molecules25163760
https://doi.org/10.3390/molecules25163760

[6] Miladi K.; Ibraheem D.; Iqbal M.; Sfar S.; Fessi H.; Elaissari A. Particles from Preformed Polymers as Carriers for Drug Delivery. EXCLI J. 2014, 13, 28-57. https://doi.org/10.17877/DE290R-15560

[7] Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. https://doi.org/10.3390/gels9070523
https://doi.org/10.3390/gels9070523

[8] Suberlyak, O.; Skorokhoda, V. Hydrogels Based on Polyvinylpyrrolidone Copolymers. In Hydrogels; Haider, S.; Haider, A., Eds.; IntechOpen; London, 2018; pp 136-214. https://doi.org/10.5772/intechopen.72082
https://doi.org/10.5772/intechopen.72082

[9] Zhang, W.; Chen, S.; Jiang, W.; Zhang, Q.; Liu, N.; Wang, Z.; Li, Z.; Zhang, D. Double-Network Hydrogels for Biomaterials: Structure-Property Relationships and Drug Delivery. Eur. Polym. J. 2023, 185, 111807. https://doi.org/10.1016/j.eurpolymj.2022.111807
https://doi.org/10.1016/j.eurpolymj.2022.111807

[10] Drury, J.L.; Mooney, D.J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomater. 2003, 24, 4337-4351. https://doi.org/10.1016/s0142-9612(03)00340-5
https://doi.org/10.1016/S0142-9612(03)00340-5

[11] Lin, C.; Anseth, K. PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharm. Res. 2009, 26, 631-643. https://doi.org/10.1007/s11095-008-9801-2
https://doi.org/10.1007/s11095-008-9801-2

[12] Slaughter, B.V.; Khurshid, S.S.; Omar, Z.F.; Khademhosseini, A.; Peppas, N.A. Hydrogels in Regenerative Medicine. J. Adv. Mater. 2009, 21, 3307-3329. https://doi.org/10.1002/adma.200802106
https://doi.org/10.1002/adma.200802106

[13] Thi, T.T.H.; Laney M.; Zhang, H.; Martinez, F.; Lee, Y.; Jang, Y. C. Designing Biofunctional Hydrogels for Stem Cell Biology and Regenerative Medicine Applications. J. Ind. Eng. Chem. 2024, 129, 69-104. https://doi.org/10.1016/j.jiec.2023.08.042
https://doi.org/10.1016/j.jiec.2023.08.042

[14] Toh, W.S.; Loh, X.J. Advances in Hydrogel Delivery Systems for Tissue Regeneration. Mater. Sci. Eng. C 2014, 45, 690-697. https://doi.org/10.1016/j.msec.2014.04.026
https://doi.org/10.1016/j.msec.2014.04.026

[15] Ji, D.Y.; Kuo, T.F.; Wu, H.D.; Yang, J.C.; Lee, S.Y. A Novel Injectable Chitosan/Polyglutamate Polyelectrolyte Complex Hydrogel with Hydroxyapatite for Soft-Tissue Augmentation. Carbohydr. Polym. 2012, 89, 1123-1130. https://doi.org/10.1016/j.carbpol.2012.03.083
https://doi.org/10.1016/j.carbpol.2012.03.083

[16] Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel Machines. Mater. Today 2020, 36, 102-124. https://doi.org/10.1016/j.mattod.2019.12.026
https://doi.org/10.1016/j.mattod.2019.12.026

[17] Mahinroosta, M.; Farsangi, Z. J.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42-55. https://doi.org/10.1016/j.mtchem.2018.02.004
https://doi.org/10.1016/j.mtchem.2018.02.004

[18] Mehta P.; Sharma, M.; Devi, M. Hydrogels: An Overview of its Classifications, Properties, and Applications. J. Mech. Behav. Biomed. Mater. 2023, 147, 106145. https://doi.org/10.1016/j.jmbbm.2023.106145
https://doi.org/10.1016/j.jmbbm.2023.106145

[19] Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R. A Mini Review on Hydrogels Classification and Recent Developments in Miscellaneous Applications. Mater. Sci. Eng.: C 2017, 79, 958-971. https://doi.org/10.1016/j.msec.2017.05.096
https://doi.org/10.1016/j.msec.2017.05.096

[20] Kapate N.; Clegg J. R.; Mitragotri S. Non-Spherical Micro- and Nanoparticles for Drug Delivery: Progress over 15 Years. Adv. Drug Deliv. Rev. 2021, 177, 113807. https://doi.org/10.1016/j.addr.2021.05.017
https://doi.org/10.1016/j.addr.2021.05.017

[21] Wang, L.; Li, L.; Sun, Y.; Ding, J.; Li, J.; Duan, X.; Li, Y.; Junyaprasert, V.B.; Mao, S. In vitro and in vivo Evaluation of Chitosan Graft Glyceryl Monooleate as Peroral Delivery Carrier of Enoxaparin. Int. J. Pharm. 2014, 471, 391-399. https://doi.org/10.1016/j.ijpharm.2014.05.050
https://doi.org/10.1016/j.ijpharm.2014.05.050

[22] Motlekar, N.A.; Youan, B.B.C. The Quest for Non-Invasive Delivery of Bioactive Macromolecules: A Focus on Heparins. J. Control Release 2006, 113, 91-101. https://doi.org/10.1016/j.jconrel.2006.04.008
https://doi.org/10.1016/j.jconrel.2006.04.008

[23] Lai, W. F.; He, Z. D. Design and Fabrication of Hydrogel-Based Nanoparticulate Systems for in vivo Drug Delivery. J. Control Release 2016, 243, 269-82. https://doi.org/10.1016/j.jconrel.2016.10.013
https://doi.org/10.1016/j.jconrel.2016.10.013

[24] Akgöl, S.; Öztürk, N.; Denizli, A. New Generation Polymeric Nanospheres for Catalase Immobilization. J. Appl. Polym. Sci. 2009, 114, 962-970. https://doi.org/10.1002/app.29790
https://doi.org/10.1002/app.29790

[25] Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20. https://doi.org/10.3390/scipharm87030020
https://doi.org/10.3390/scipharm87030020

[26] Zhang, Y.; Huang, Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front. Chem. 2021, 8, 6156565. https://doi.org/10.3389/fchem.2020.615665]
https://doi.org/10.3389/fchem.2020.615665

[27] Brooks, B.W. Suspension Polymerization Processes. Chem. Eng. Technol. 2010, 33, 1737-1744. https://doi.org/10.1002/ceat.201000210
https://doi.org/10.1002/ceat.201000210

[28] Kesharwani, P.; Bisht, A.; Alexander, A.; Dave, V.; Sharma, S. Biomedical Applications of Hydrogels in Drug Delivery System: An Update. J. Drug Deliv. Sci. Technol. 2021, 66, 102914. https://doi.org/10.1016/j.jddst.2021.102914
https://doi.org/10.1016/j.jddst.2021.102914

[29] Gelli, R.; Mugnaini, G.; Bolognesi, T.; Bonini, M. Cross-Linked Porous Gelatin Microparticles with Tunable Shape, Size and Porosity. Langmuir 2021, 37, 12781-12789. https://doi.org/10.1021/acs.langmuir.1c01508
https://doi.org/10.1021/acs.langmuir.1c01508

[30] Quadrado, R.F.N.; Fajardo, A.R. Microparticles Based on Carboxymethyl Starch/Chitosan Polyelectrolyte Complex as Vehicles for Drug Delivery Systems. Arab. J. Chem. 2020, 13, 2183-2194. https://doi.org/10.1016/j.arabjc.2018.04.004
https://doi.org/10.1016/j.arabjc.2018.04.004

[31] Goyal, P. K.; Khurana, S.; Mittal, A. Hydrogel-Bound Cytotoxic Drug Delivery System for Breast Cancer. Health Sci. Rev. 2023, 9, 100140. https://doi.org/10.1016/j.hsr.2023.100140
https://doi.org/10.1016/j.hsr.2023.100140

[32] Holcapkova, P.; Hrabalikova, M.; Stoplova, P.; Sedlarik, V. Core-Shell PLA-PVA Porous Microparticles as Carriers for Bacteriocin Nisin. J. Microencapsul. 2017, 34, 243-249. https://doi.org/10.1080/02652048.2017.1324919
https://doi.org/10.1080/02652048.2017.1324919

[33] Peterson, T.E.; Gigliobianco, G.; Sherborne, C.; Green, N.H.; Dugan, J.M.; MacNeil, S.; Reilly, G.C.; Claeyssens, F. Porous Microspheres Support Mesemchymal Progenitor Cell Ingrowth and Stimulate Angiogenesis. APL Bioeng. 2018,2, 026103. https://doi.org/10.1063/1.5008556
https://doi.org/10.1063/1.5008556

[34] Ray, P.; Maity, M.; Barik, H.; Sahoo, G. S.; Hasnain, M. S.; Hoda, M. N.; Nayak, A. K. Chapter 3 - Alginate-Based Hydrogels for Drug Delivery Applications. In Alginates in Drug Delivery; Academic Press, 2020; pp 41-70. https://doi.org/10.1016/B978-0-12-817640-5.00003-0
https://doi.org/10.1016/B978-0-12-817640-5.00003-0

[35] Ai, Y.; Lin, Zh.; Zhao, W.; Cui, M.; Qi, W.; Huang, R.; Su, R. Nanocellulose-Based Hydrogels for Drug Delivery. J. Mater. Chem. B 2023, 30, 7004-7023. https://doi.org/10.1039/D3TB00478C
https://doi.org/10.1039/D3TB00478C

[36] Park, J.; Lim, Y.; Baik, J.J.; Jeong, J.; An, S.; Jeong, S.I.; Gwon, H.; & Khil, M.S. Preparation and Evaluation of β-Glucan Hydrogel Prepared by the Radiation Technique for Drug Carrier Applications. Int. J. Biol. Macromol. 2018, 118, 333-339. https://doi.org/10.1016/j.ijbiomac.2018.06.068
https://doi.org/10.1016/j.ijbiomac.2018.06.068

[37] Chen, L.; Deng, X.; Tian, L.; Xie,J.; Xiang, Y.; Liang, X.; Jiang, L.; Jiang, L. Preparation and Properties of Chitosan/Dialdehyde Sodium Alginate/Dopamine Magnetic Drug-Delivery Hydrogels. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 13273. https://doi.org/10.1016/j.colsurfa.2023.132739
https://doi.org/10.1016/j.colsurfa.2023.132739

[38] Auriemma, G.; Russo, P.; Del Gaudio, P.; García-González, C.A.; Landín, M.; Aquino, R.P. Technologies and Formulation Design of Polysaccharide-Based Hydrogels for Drug Delivery. Molecules 2020, 25, 3156. https://doi.org/10.3390/molecules25143156
https://doi.org/10.3390/molecules25143156

[39] Drăgan, E.S.; Cocarta, A.I.; Gierszewska, M. Designing Novel Macroporous Composite Hydrogels Based on Methacrylic Acid Copolymers and Chitosan and in vitro Assessment of Lysozyme Controlled Delivery. Colloids Surf. B 2016, 139, 33-41. https://doi.org/10.1016/j.colsurfb.2015.12.011
https://doi.org/10.1016/j.colsurfb.2015.12.011

[40] Jing, Z.; Zhang, G.; Sun, X.F.; Shi, X.; Sun, W. Preparation and Adsorption Properties of a Novel Superabsorbent Based on Multiwalled Carbon Nanotubes-Xylan Composite and Poly(Methacrylic Acid) for Methylene Blue from Aqueous Solution. Polym. Compos. 2014, 35, 1516. https://doi.org/10.1002/pc.22805
https://doi.org/10.1002/pc.22805

[41] Wang, Y.; Yuan, Z.C.; Chen, D.J. Thermo- and pH-sensitive Behavior of Hydrogels Based on Oligo (Ethylene Glycol) Methacrylates and Acrylic Acid. J Mater Sci. 2012, 47, 1280-1288. https://doi.org/10.1007/s10853-011-5901-1
https://doi.org/10.1007/s10853-011-5901-1

[42] Chen, Y.; Sun, P. pH-Sensitive Polyampholyte Microgels of Poly(Acrylic Acid-co-Vinylamine) as Injectable Hydrogel for Controlled Drug Release. Polymers 2019, 11, 285. https://doi.org/10.3390/polym11020285
https://doi.org/10.3390/polym11020285

[43] Tomar, N.; Tomar, M.; Nagaich, U. pHEMA Hydrogels: Devices for Ocular Drug Delivery. Int. J. Health Allied Sci. 2012, 1, 224-230. https://www.ijhas.in/text.asp?2012/1/4/224/107844
https://doi.org/10.4103/2278-344X.107844

[44] Goyal, P.; Dhar, R.; Sagiri, S.; Uvanesh, K.; Senthilguru, K.; Shankar, G.; Samal, A.; Pramanik, K.; Banerjee, I.; Ray, S.S.; et al. Synthesis and Characterization of Novel Dual Environment-Responsive Hydrogels of Hydroxyethyl Methacrylate and Methyl Cellulose. Des. Monomers Polym. 2015, 18, 367-377. https://doi.org/10.1080/15685551.2015.1012626
https://doi.org/10.1080/15685551.2015.1012626

[45] Musgrave, C.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. https://doi.org/10.3390/ma12020261
https://doi.org/10.3390/ma12020261

[46] Ferreira, L.; Vidal, M.; Gil, M.H. Evaluation of Poly(2-Hydroxyethyl Methacrylate) Gels as Drug Delivery Systems at Different pH Values. Int. J. Pharm. 2000, 194, 169-180.https://doi.org/10.1016/S0378-5173(99)00375-0
https://doi.org/10.1016/S0378-5173(99)00375-0

[47] Saini, R.K.; Bagri, L.P.; Bajpai, A.K. Poly (2-hydroxyethyl methacrylate) (PHEMA) Based Nanoparticles for Drug Delivery Applications: A review. Nano Sci. and Nano Technol.: An Indian J. 2014, 8, 416-427. https://doi.org/10.1007/978-1-61779-953-2_26
https://doi.org/10.1007/978-1-61779-953-2_26

[48] Passos, M.F.; Carvalho, N.M.S.; Rodrigues, A.A.; Bavaresco, V.P.; Jardini, A.L.; Maciel, M.R.W.; Filho, R.M. PHEMA Hydrogels Obtained by Infrared Radiation for Cartilage Tissue Engineering. Int. J. Chem. Eng. 2019, 2019, 1-9. https://doi.org/10.1155/2019/4249581
https://doi.org/10.1155/2019/4249581

[49] Zare, M.; Bigham, A.; Zare, M.; Luo, H.; Rezvani Ghomi, E.; Ramakrishna, S. pHEMA: An Overview for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 6376. https://doi.org/10.3390/ijms22126376
https://doi.org/10.3390/ijms22126376

[50] Horak, D.; Lednicky, F.; Bleha, M. Effect of Inert Components on the Porous Structure of 2-Hydroxyethyl Methacrylate-Ethylene Dimethacrylate Copolymers. Polymer 1996, 37, 4243-4249. https://doi.org/10.1016/0032-3861(96)00259-5
https://doi.org/10.1016/0032-3861(96)00259-5

[51] Paljevac, M.; Krajnc, P.; Hanková, L.; Holub, L.; Droumaguet, B. L.; Grande, D.; Jeřábek, K. Two-Step Syneretic Formation of Highly Porous Morphology during Copolymerization of Hydroxyethyl Methacrylate and Ethylene Glycol Dimethylacrylate. Mater. Today Commun. 2016, 7, 16-21. https://doi.org/10.1016/j.mtcomm.2016.02.004
https://doi.org/10.1016/j.mtcomm.2016.02.004

[52] Reyes, P.; Edeleva, M.; D'hooge, D.R.; Cardon, L.; Cornillie, P. Combining Chromatographic, Rheological, and Mechanical Analysis to Study the Manufacturing Potential of Acrylic Blends into Polyacrylic Casts. Materials 2021, 14, 6939. https://doi.org/10.3390/ma14226939
https://doi.org/10.3390/ma14226939

[53] Xiao, J.; Lu, Q.; Cong, H.; Shen, Y.; Yu, B. Microporous Poly(Glycidyl Methacrylate-co-Ethylene Glycol Dimethyl Acrylate) Microspheres: Synthesis, Functionalization and Applications. Polym. Chem. 2021, 12, 6050-6070. https://doi.org/10.1039/d1py00834j
https://doi.org/10.1039/D1PY00834J

[54] Kierys, A.; Grochowicz, M.; Kosik, P. The release of Ibuprofen Sodium Salt from Permanently Porous Poly(Hydroxyethyl Methacrylate-co-trimethylolpropane Trimethacrylate) Resins. Microporous Mesoporous Mater. 2015, 217, 133-140. https://doi.org/10.1016/j.micromeso.2015.06.009
https://doi.org/10.1016/j.micromeso.2015.06.009

[55] Svec, F.; Labsky, J.; Lanyova, L.; Hradil, J.; Pokorny, S.; Kalal, J. Reactive polymers. The Synthesis of 2-Hydroxypropylene Dimethacrylate in a Mixture with Glycidyl Methacrylate and their Copolymerization to a Macroporous Product. Angew. Makromol. Chem. 1980, 90, 47-55. https://doi.org/10.1002/apmc.1980.050900105
https://doi.org/10.1002/apmc.1980.050900105

[56] Horak, D.; Labsky, J. A Novel Hydrophilic Crosslinker in Preparation of Hydrophilic Sorbents. React. Polym. 1997, 32, 277-280. https://doi.org/10.1016/S1381-5148(97)00010-2
https://doi.org/10.1016/S1381-5148(97)00010-2

[57] Kotha, A.; Raman, R.; Ponrathnam, S.; Kumar, K.; Shewale, J. Beaded Reactive Polymers. 3. Effect of Triacrylates as Crosslinkers on the Physical Properties of Glycidyl Methacrylate Copolymers and Immobilization of penicillin G acylase. Appl. Biochem. Biotechnol. 1998, 74, 191-203. https://doi.org/10.1007/BF02825965
https://doi.org/10.1007/BF02825965

[58] Norhayati, A.; Mohammad Zuhaili, Y.; Rabiatuladawiah, M. Synthesis and Characterization of poly(HEMA-co-EGDMA-co-VBC) by Modified Suspension Polymerization: Effects of Polymerization Parameters Reaction on Chemical and Thermal Properties of Polymer. Mater. Today: Proc. 2018, 5, 22010-22019. https://doi.org/10.1016/j.matpr.2018.07.062
https://doi.org/10.1016/j.matpr.2018.07.062

[59] Jayakrishnan, A.; Thanoo, B. C. Suspension Polymerization of 2-Hydroxyethyl Methacrylate in the Presence of Polymeric Diluents: A Novel Route to Spherical Highly Porous Beads for Biomedical Applications. J. Biomed. Mater. Res. 1990, 24, 913-927. https://doi.org/10.1002/jbm.820240709
https://doi.org/10.1002/jbm.820240709

[60] Madkour, M.; Bumajdad, A.; & Al-Sagheer, F. To what extent do polymeric stabilizers affect nanoparticles characteristics? Adv. Colloid Interface Sci. 2019, 270, 38-53. https://doi.org/10.1016/j.cis.2019.05.004
https://doi.org/10.1016/j.cis.2019.05.004

[61] Horak, D.; Pelzbauer, Z.; Svec F., Kalal, J. Reactive Polymers. 3. The Influence of the Suspension Stabilizer on the Morphology of a Suspension Polymer. J. Appl. Polym. Sci. 1981, 26, 3205-3211. https://doi.org/10.1002/app.1981.070261002
https://doi.org/10.1002/app.1981.070261002

[62]. Rienda, J. M. Release of Gentamicin Sulphate from a Modified Commercial Bone Cement. Effect of (2-Hydroxyethyl Methacrylate) Comonomer and poly(N-vinyl-2-pyrrolidone) Additive on Release Mechanism and Kinetics. Biomater. 2002, 23, 3787-3797. https://doi.org/10.1016/s0142-9612(02)00028-5
https://doi.org/10.1016/S0142-9612(02)00028-5

[63]. Puig, J E.; Mendizabal, E. Suspension Polymerization. In Polymeric Materials Encyclopedia; CRC Press, New York, 1996; pp 8215-8220. https://doi.org/10.1201/9780367811686
https://doi.org/10.1201/9780367811686

[64] Vatankhah, Z.; Dehghani, E.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. One-Step Fabrication of Low Cytotoxic Anisotropic Poly(2-Hydroxyethyl Methacrylate-co-Methacrylic Acid) Particles for Efficient Release of DOX. J Drug Deliv Sci Tec. 2019, 54, 101332. https://doi.org/10.1016/j.jddst.2019.101332
https://doi.org/10.1016/j.jddst.2019.101332

[65] Raoufinia, R.; Mota, A.; Keyhanvar, N.; Safari, F.; Shamekhi, S.; Abdolalizadeh, J. Overview of Albumin and Its Purification Methods. Adv. Pharm. Bull. 2016, 6, 495-507. https://doi.org/10.15171/apb.2016.063
https://doi.org/10.15171/apb.2016.063

[66] Horák, D.; Hlídková, H.; Kit, Y.; Antonyuk, V.; Myronovsky, S.; Stoika, R. Magnetic Poly(2-Hydroxyethyl Methacrylate) Microspheres for Affinity Purification of Monospecific anti-p46 kDa/Myo1C Antibodies for Early Diagnosis of Multiple Sclerosis Patients. Biosci. Rep. 2017, 37, BSR20160526. https://doi.org/10.1042/BSR20160526
https://doi.org/10.1042/BSR20160526

[67] Kayhan, C.T.; Ural, F.Z.; Koruyucu, M.; Salman, Y.; Uygun, M.; Uygun, D.A.; Akgöl, S.; Denizli, A. DNA Isolation by Galactoacrylate-Based nano-poly(HEMA- co -Gal-OPA) Nanopolymers. J. Biomater. Sci. Polym. Ed. 2017, 28, 1469-1479. https://doi.org/10.1080/09205063.2017.1330587
https://doi.org/10.1080/09205063.2017.1330587

[68] Roointan, A.; Farzanfar, J.; Samani, S.M.; Behzad-Behbahani, A.; Farjadian, F. Smart pH Responsive Drug Delivery System Based on Poly(HEMA-co-DMAEMA) Nanohydrogel. Int. J. Pharm. 2018, 552, 301-311. https://doi.org/10.1016/j.ijpharm.2018.10.001
https://doi.org/10.1016/j.ijpharm.2018.10.001

[69] Yu, B.; Song, N.; Hu, H.; Chen, G.; Shen, Y.; Cong, H. A Degradable Triple Temperature-, pH-, and Redox-Responsive Drug System for Cancer Chemotherapy. J Biomed Mater Res A 2018, 106, 3203-3210. https://doi.org/10.1002/jbm.a.36515
https://doi.org/10.1002/jbm.a.36515

[70] Rapado, M.; Peniche, C. Synthesis and Characterization of pH and Temperature Responsive Poly(2-Hydroxyethyl Methacrylate-co-Acrylamide) Hydrogels. Polímeros 2015, 25, 547-555. https://doi.org/10.1590/0104-1428.2097
https://doi.org/10.1590/0104-1428.2097

[71] Parilti, R.; Castañon, A.; Lansalot, M.; D'Agosto, F.; Jérôme, Ch.; Howdle, S. M. Hydrocarbon Based Stabilisers for the Synthesis of Cross-Linked Poly(2-Hydroxyethyl Methacrylate) Particles in Supercritical Carbon Dioxide. Polym. Chem. 2019, 10, 5760-5770. https://doi.org/10.1039/C9PY00998A
https://doi.org/10.1039/C9PY00998A

[72] Horak, D.; Svec, F.; Gumargalieva, K.Z.; Adamyan, A.A.; Skuba. N.D.; Titova, M.I.; Trostenyuk, N.V. Hydrogels in Endovascular Embolization. I. Spherical Particles of Poly(2-Hydroxyethyl Methacrylate) and their Medico-Biological Properties. Biomaterials 1986, 7, 188-192. https://doi.org/10.1016/0142-9612(86)90100-6
https://doi.org/10.1016/0142-9612(86)90100-6

[73] Horák, D.; Metalová, M.; Švec, F.; Drobník, J.; Kálal, J.; Borovička, M.; Adamyan, A.A.; Voronkova, O.S.; Gumargalieva, K.Z. Hydrogels in Endovascular Embolization. III. Radiopaque Spherical Particles, their Preparation and Properties. Biomaterials 1987, 8, 142-145. https://doi.org/10.1016/0142-9612(87)901049
https://doi.org/10.1016/0142-9612(87)90104-9

[74] Gugoasa, A.I.; Racovita, S.; Vasiliu, S.; Popa, M. Grafted Microparticles Based on Glycidyl Methacrylate, Hydroxyethyl Methacrylate and Sodium Hyaluronate: Synthesis, Characterization, Adsorption and Release Studies of Metronidazole. Polymers 2022, 14, 4151. https://doi.org/10.3390/polym14194151
https://doi.org/10.3390/polym14194151

[75] Nart, Z.; Kayaman-Apohan, N. Preparation, Characterization and Drug Release Behavior of Poly(Acrylic Acid-co-2-Hydroxyethyl Methacrylate-co-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Microgels. J. Polym. Res. 2011, 18, 869-874. https://doi.org/10.1007/s10965-010-9483-4
https://doi.org/10.1007/s10965-010-9483-4

[76] Bardakci, F.; Kusat, K.; Adnan, M.; Badraoui, R.; Alam, M.J.; Alreshidi, M.M.; Siddiqui, A.J.; Sachidanandan, M.; Akgöl, S. Novel Polymeric Nanomaterial Based on Poly(Hydroxyethyl Methacrylate-Methacryloylamidophenylalanine) for Hypertension Treatment: Properties and Drug Release Characteristics. Polymers 2022, 14, 5038. https://doi.org/10.3390/polym14225038
https://doi.org/10.3390/polym14225038

[77] Seeli, S.; Prabaharan, M. Guar Gum Oleate-graft-poly(methacrylic Acid) Hydrogel as a Colon-Specific Controlled Drug Delivery Carrier. Carbohydr. Polym. 2017, 158, 51-57. https://doi.org/10.1016/j.carbpol.2016.11.092
https://doi.org/10.1016/j.carbpol.2016.11.092

[78] Bajpai A.; Gupta MK, Bajpai J. The Biocompatibility and Water Uptake Behavior of Superparamagnetic Poly (2-Hydroxyethylmethacrylate) Magnetite Nanocomposites as Possible Nanocarriers for Magnetically Mediated Drug Delivery System. J Polym. Res. 2014, 21, 518. https://doi.org/10.1007/s10965-014-0518-0
https://doi.org/10.1007/s10965-014-0518-0

[79] Chouhan, R.; Bajpai, A. An in vitro Release Study of 5-Fluoro-uracil (5-FU) from Swellable Poly-(2-Hydroxyethyl Methacrylate) (PHEMA) Nanoparticles. J. Mater. Sci. Mater. Med. 2009, 20, 1103-1114. https://doi.org/10.1007/s10856-008-3677-x
https://doi.org/10.1007/s10856-008-3677-x

[80] Pradeepkumar, P.; Subbiah, A.; Rajan, M. Synthesis of Bio-Degradable Poly (2-Hydroxyethyl Methacrylate) Using Natural Deep Eutectic Solvents for Sustainable Cancer Drug Delivery. SN Appl. Sci. 2019, 1, 568. https://doi.org/10.1007/s42452-019-0591-4
https://doi.org/10.1007/s42452-019-0591-4

[81] Kumar, S.S.D.; Surianarayanan, M.; Vijayaraghavan, R.; Mandal, A.B.; MacFarlane, D.R. Curcumin loaded Poly (2- Hydroxyethyl Methacrylate) Nanoparticles from Gelled Ionic Liquid - In vitro Cytotoxicity and Anti-Cancer Activity in SKOV-3 Cells. Eur. J. Pharm. Sci. 2014, 51, 34-44. https://doi.org/10.1016/j.ejps.2013.08.036
https://doi.org/10.1016/j.ejps.2013.08.036

[82] Guo, J.; Hong, H.; Chen, G.; Shi, S.; Nayak, T.R.; Theuer, C.P.; Barnhart, T.E.; Cai, W.; Gong, S. Theranostic Unimolecular Micelles Based on Brush-Shaped Amphiphilic Block Copolymers for Tumor-Targeted Drug Delivery and Positron Emission Tomography Imaging. ACS Appl. Mater. Interfaces 2014, 6, 21769-21779. https://doi.org/10.1021/am5002585
https://doi.org/10.1021/am5002585

[83] Aeinehvand, R.; Zahedi, P.; Kashani-Rahimi, S.; Fallah-Darrehchi, M.; Shamsi, M. Synthesis of Poly(2-hydroxyethyl methacrylate)-based Molecularly Imprinted Polymer Nanoparticles Containing Timolol Maleate: Morphological, Thermal, and Drug Release Along With Cell Biocompatibility Studies. Polym. Adv. Technol. 2017, 28, 828-841. https://doi.org/10.1002/pat.3986
https://doi.org/10.1002/pat.3986

[84] Horak, D.; Semenyuk, N.; Lednicky, F. Effect of the Reaction Parameters on the Particle Size in the Dispersion Polymerization of 2-Hydroxyethyl and Glycidyl Methacrylate in the Presence of a Ferrofluid. J. Polym. Sci. A Polym. Chem. 2003, 41, 1848-1863. https://doi.org/10.1002/pola.10728
https://doi.org/10.1002/pola.10728

[85] Suberlyak, O.; Skorokhoda, V.; Semenyuk, N.; Melnyk, Y. Biomedical materials based on polyvinylpyrrolidone (co)polymers; Lviv Polytechnic Publishing House, 2015. https://vlp.com.ua/node/13933

[86] Buhler, V. Kollidon: Polyvinylpyrrolidone Excipients for the Pharmaceuticals; Ludwigshafen, Germany: BASF, 2008.

[87] Melnyk, Y.; Stetsyshyn, Y.; Skorokhoda, V.; Nastishin, Y., Polyvinylpyrrolidone-graft-poly(2-hydroxyethylmethacrylate) Hydrogel Membranes for Encapsulated Forms of Drugs. J. Polym. Res. 2020, 27, 354. https://doi.org/10.1007/s10965-020-02335-7
https://doi.org/10.1007/s10965-020-02335-7

[88] Grytsenko, O.; Dulebova, L.; Suberlyak, O.; Spišák, E.; Gajdoš, I. Features of Structure and Properties of PHEMA-gr-PVP Block Copolymers, Obtained in the Presence of Fe2+. Materials 2020, 13, 1-15. https://doi.org/10.3390/ma13204580
https://doi.org/10.3390/ma13204580

[89] Skorokhoda, V.; Dziaman, I.; Dudok, G.; Bratychak, M.; Semenyuk, N. The Ultrasonic Effect On Obtaining And Properties Of Osteoplastic Porous Composites. Chem.Chem.Technol. 2019, 13, 429-435. https://doi.org/10.23939/chcht13.04.429
https://doi.org/10.23939/chcht13.04.429

[90] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Levytska, Kh.; Dudok, G. The Influence of the Nature of a Calcium-Containing Filler on the Preparation and Properties of Osteoplastic Porous Composites. Voprosy Khimii i Khim. Tekhnologii 2018, 2, 101-108.

[91] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Ortynska, N.; Suberlyak, O. Film hydrogels on the basis of polyvinylpyrrolidone copolymers with regulated sorption-desorption characteristics. Chem. Chem.Technol. 2017, 11, 171-174. https://doi.org/10.23939/chcht11.02.171
https://doi.org/10.23939/chcht11.02.171

[92] Skorokhoda, V.; Melnyk, Y.; Shalata, V.; Skorokhoda, T.; Suberlyak, O. An investigation of obtaining patterns, structure and diffusion properties of biomedical purpose hydrogel membranes. East.Eur.J. Enterp. Technol. 2017, 1(6, 85), 50-55. https://doi.org/10.15587/1729-4061.2017.92368
https://doi.org/10.15587/1729-4061.2017.92368

[93] Skorokhoda, V.; Semenyuk, N.; Dziaman, I.; Suberlyak, O. Mineral Filled Porous Composites Based On Polyvinylpyrrolidone Copolymers with Bactericidal Properties. Chem.Chem.Technol. 2016, 10, 187-192. https://doi.org/10.23939/chcht10.02.187
https://doi.org/10.23939/chcht10.02.187

[94] Suberlyak, O.V.; Melnyk, Y.Y.; Skorokhoda, V.I. Regularities of preparation and properties of hydrogel membranes. Mater. Sci. 2015, 50, 889-896. https://doi.org/10.1007/s11003-015-9798-8
https://doi.org/10.1007/s11003-015-9798-8

[95] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Suberlyak, O. Obtaining peculiarities and properties of polyvinylpyrrolidone сopolymers with hydrophobic vinyl monomers. Chem.Chem.Technol. 2015, 9, 55-59. https://doi.org/10.23939/chcht09.01.055
https://doi.org/10.23939/chcht09.01.055

[96] Semenyuk, N.; Kostiv, U.; Suberlyak, O.; Skorokhoda, V. Peculiarities of filled porous hydrogels production and properties. Chem.Chem.Technol. 2013, 7, 95-99. https://doi.org/10.23939/chcht07.01.095
https://doi.org/10.23939/chcht07.01.095

[97] Skorokhoda, V.; Melnyk, Y.; Semenyuk, N.; Suberlyak, O. Structure controlled formation and properties of highly hydrophilic membranes based on polyvinylpyrrolidone copolymers. Chem.Chem.Technol. 2012, 6, 301-305. https://doi.org/10.23939/chcht06.03.301
https://doi.org/10.23939/chcht06.03.301

[98] Skorokhoda, V.J.; Semenyuk, N.B.; Dudok, G.D.; Kysil, H.V. Silver-containing Osteoplastic Nanocomposites Based on Polyvinylpyrrolidone Copolymers. Voprosy Khimii i Khim. Tekhnologii 2022, 3, 67-73. http://dx.doi.org/10.32434/0321-4095-2022-142-3-67-73
https://doi.org/10.32434/0321-4095-2022-142-3-67-73

[99] Skorokhoda, V.; Semenyuk, N.; Suberlyak, O. Technological Aspects of Obtaining Spherical Granules of Copolymers of Hydroxyethyl Methacrylate with Polyvinylpyrrolidone. Voprosy Khimii i Khim. Tekhnologii 2004, 3, 88-91.

[100] Suberlyak, O.; Semenyuk, N.; Skorokhoda, V. Peculiarities of Obtaining HEMA Granular Copolymers from PVP. Khim. Prom. Ukr. 2002, 3, 30-34.

[101] Semenyuk, N.; Dudok, G.; Suberlyak, O.; Skorokhoda, V. The Suspension Polymerization Regularities of Glycidyl Methacrylate in Presence of Polyvinylpyrrolidone. Voprosy Khimii i Khim. Tekhnologii 2011, 2, 54-59.

[102] Skorokhoda, V.; Semenyuk, N.; Lukan, G.; Suberlyak, O. The Influence of Technological Parameters on the Regularities of Synthesis of Polyvinylpirrolidone Hydrophilic Granular Copolymers. Voprosy Khimii i Khim. Tekhnologii 2006, 3, 67-71.

[103] Semenyuk, N.; Dudok, G.; Chopyk, N.; Skorokhoda, V. Kinetic Features of Dispersion Polymerization of HEMA Compositions with PVP. Visnyk Nats. Univ. "Lvivska Politechnika" 2010, 667, 456-459.

[104]. Suberlyak, O.; Gudzera, S.; Skorokhoda, V. Peculiarities of HEMA Polymerization in Polar Solvents in the Presence of PVP. Dopovidi AN URSR 1986, 7, 49-51.

[105] Skorokhoda, V.; Semenyuk, N.; Melnyk, J.; Suberlyak, O. Hydrogels Penetration and Sorption Properties in the Substances Release Controlled Processes. Chem.Chem.Technol. 2009, 3, 117-121. https://doi.org/10.23939/chcht03.02.117
https://doi.org/10.23939/chcht03.02.117

[106] Semenyuk, N.; Kohut, О.; Chernygevych, І.; Neboga, G.; Skorokhoda, V. The Features of Obtaining of Spherical Hydrogels for Drug Delivery Systems. Visnyk Nats. Univ. "Lvivska Politechnika" 2015, 812, 404-408. http://nbuv.gov.ua/UJRN/VNULPX_2015_812_71