Антибактеріальна ефективність полімерних композитів, легованих сріблом або мишʼяком проти кількох видів бактерій
Attachment | Size |
---|---|
full_text.pdf | 1.26 MB |
[1] Galya, T.; Sedlarik, V.; Kuritka, I.; Novotny, R.; Sedlarikova, J.; Sah, P. Antibacterial Poly(Vinyl Alcohol) Film Containing Silver Nanoparticles: Preparation and Characterization. J. Appl. Polym. Sci. 2008, 110 (5), 3178-3185. https://doi.org/10.1002/app.28908
[2] Robbens, J.; Vanparys, C.; Nobels, I.; Blust, R., Van Hoecke, K., Janssen, C., De Schamphelaere, K., Roland, K., Blanchard, G., Silvestre, F. et al. Eco-, Geno- and Human Toxicology of Bio-Active Nanoparticles for Biomedical Applications. Toxicology 2010, 269, 170-181. https://doi.org/10.1016/j.tox.2009.11.002
[3] Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract. Biotechnol. Prog. 2006, 22, 577-583. https://doi.org/10.1021/bp0501423
[4] Brostow, W.; Hagg Lobland, H.E.; Narkis, M. Sliding Wear, Viscoelasticity, and Brittleness of Polymers. J. Mater. Res. 2006, 21, 2422-2428. https://doi.org/10.1557/jmr.2006.0300
[5] Olea-Mejia, O.J.; Brostow, W.; Escobar-Halarcon, L.; Vigueras-Santiago, E. Tribological Properties of Polymer Nanohybrids Containing Gold Nanoparticles Obtained by Laser Ablation. J. Nanosci. Nanotechnol. 2012, 12, 2750-2755(6). https://doi.org/10.1166/jnn.2012.5737
[6] Brostow, W.; Hagg Lobland H.E. Materials: Introduction and Applications; John Wiley & Sons: Hoboken, NJ, 2017.
[7] Brostow, W.; Gahutishvili, M.; Gigauri, R.; Hagg Lobland, H.E.; Japaridze, S.; Lekishvili, N. Separation of Natural Trivalent Oxides of Arsenic and Antimony. Chem. Eng. J. 2010, 159, 24-26. https://doi.org/10.1016/j.cej.2010.02.016
[8] Barbakadze, K.; Brostow, W.; Datashvili, T.; Hnatchuk, N.; Lekishvili, N. Antibiocorrosive Epoxy-Based Coatings with Low Friction and High Scratch Resistance. Wear 2018, 394-395, 228-235. https://doi.org/10.1016/j.wear.2017.08.006
[9] Gakhutishvili, M.; Gigauri, R. Extraction of Arsenic from Mineral Resources and Industrial Waste. Georgia Chem. J. 2010, 4 (10), 53-54.
[10] Bakradze, E., Vodyanitskii, Y., Urushadze, T., Chankseliani, Z., Arabidze, M., About rationing of the heavy metals in soils of Georgia, Ann. Agrarian Sci. 2018, 16, 1-6.
[11] Raffoux, E.; Rousselot, Ph., Poupon, Daniel , M.-T., Cassinat, B. , Delarue, R., Taksin, A.-L., Réa, D., , Buzyn, A. , Tibi, A. , Lebbé, G. et al., Combined Treatment With Arsenic Trioxide and All-Trans-Retinoic Acid in Patients With Relapsed Acute Promyelocytic Leukemia. J. Clin. Oncol. 2003, 21, 2326-2334. https://doi.org/10.1200/JCO.2003.01.149
[12] Soignet, S.L., Tong, W.P., Hirschfeld, S., Warrell Jr., R.P. Clinical Study of an Organic Arsenical, Melarsoprol in Patients with Advanced Leukemia. Cancer Chemother. Pharmacol. 1999, 44, 417-421.
[13] Baláž, P.; Sedlák, J. Arsenic in Cancer Treatment: Challenges for Application of Realgar Nanoparticles (A Minireview). Toxins 2010, 2(6), 1568-1581. https://doi.org/10.3390/toxins2061568
[14] Brostow, W.; Brumbley, S.; Gahutishvili, M.; Hnatchuk, N. Arsenic Antibacterial Polymer Composites Based on Poly(Vinyl Chloride). Macromol. Symp. 2016, 365, 258-262. https://doi.org/10.1002/masy.201650002
[15] Skiba, M.; Pivovarov, A.; Vorobyova, V. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification. Chem. Chem. Technol. 2020, 14, 47-54. https://doi.org/10.23939/chcht14.01.047
[16] Skiba, M.; Vorobyova, V.; Kovalenko, I.; Shakun, A. Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities. Chem. Chem. Technol. 2020, 14, 297-303. https://doi.org/10.23939/chcht14.03.297
[17] Matyjas-Zgondek, E.; Bacciarelli, A.; Rybicki, E.; Szynkowska, M.I.; Kołodziejczyk, M., Antibacterial Properties of Silver-Finished Textiles, Fibres Text. East. Eur. 2008, 5, 101-107.
[18] Kancharla, R.; Vadeghar Ramesh, K.; Prabhakar Ginuga, R.; Sundergopal, S. Synthesis and Characterization of Indigenous Hydrophilized Polyvinylidene Fluoride Membrane for Drinking Water Purification: Experimental Study and Modeling Aspects. Chem. Chem. Technol. 2020, 14, 239-250. https://doi.org/10.23939/chcht14.02.239
[19] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruction of Various Microorganisms Under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264
[20] Moeck, P.; Stone-Sundberg, J.; Snyder, T.J.; Kaminsky, W. Enlivening 300 Level General Education Classes on Nano-Science and Nano-Technology with 3D Printed Crystallographic Models. J. Mater. Educ. 2014, 36, 77-96.
[21] Acevedo, A.; Herrera-Posada, S. Introducing Viscoelasticity to Precollege Students through a Composite Bouncing Balls Hands-On Experiment. J. Mater. Educ. 2014, 36, 69-76.
[22] López-Martinez, A.; Mata-Jiménez, M.; Andrade, M; Alaniz-Lumbreraz, D.; Torres-Arguelles, V.; Olvera-González, E.; de la Rosa-Miranda, E.; Castaño, V.M. Non-Linear Voltage Control in Complex Electronic Materials Systems for Power Transmission:
- A Teaching Approach. J. Mater. Educ. 2014, 36, 97-105.
[23] Steinberg, D.; Swilley, S. Creating Positive Materials Science Learning Experiences at a University Venue for 1000 Middle School Students. J. Mater. Educ. 2008, 30, 351-360.
[24] Vanasupa, L.; Chen, K.C.; Stolk, J.; Savage, R.; Harding, T.; London, B.; Hughes, W. Converting Traditional Materials Labs to Project-Based Learning Experiences: Aiding Students' Development of Higher-Order Cognitive Skills. J. Mater. Educ. 2008, 30, 281-286.
[25] Boice, J.N.; King, C.M.; Higginbotham, C.; Guerney, R.W. Molecular Recycling: Application of the Twelve Principles of Green Chemistry in the Diversion of Post-Consumer Poly(Lactic Acid) Waste. J. Mater. Educ. 2008, 30, 257-280.
[26] Spinelli, L.S., Lucas, E.F. Polymers in the Production of Crude Oil: I. Experimental Discipline to Teach Laboratory Tests to Evaluate Polymers Performance. J. Mater. Educ. 2017, 39, 125-130.
[27] Vianna, E.L.F., Figueiredo, V.V., Middea, A., Brandão, V.S., Bertolino, L.C., Spinelli, L.S. Polymers in the Production of Crude Oil: II: An Experimental Procedure to Prepare Polymeric Magnetic Nanocomposites. J. Mater. Educ. 2019, 41(1-2), 41-50.
[28] Carvalho, S.P., Palermo, L.C.M., Boak, L.S., Sorbie, K.S., Lucas, E.F. Polymers in the Production of Crude Oil: III: Static Compatibility and Adsorption Test Procedure for Scale Inhibition. J. Mater. Educ. 2019, 41(3-4), 95-102.
[29] Silva, J. da C., Maravilha, T.S.L., Nunes, R. de C.P., Spinelli, L.S., Lucas, E.F. Polymers in the Production of Crude Oil: IV. Extractiopn of Asphaltenes Fraction Using Soxhlet. J. Mater. Educ. 2019, 41(5-6), 149-156.
[30] Gedde, U.W., Hedenqvist, M.S. Fundamental Polymer Science, 2nd ed.; Springer Nature Switzerland AG, 2019. https://doi.org/10.1007/978-3-030-29794-7
[31] Brostow, W., Fałtynowicz, H., Gencel, O., Grigoriev, A., Hagg Lobland, H.E., Zhang, D. Mechanical and Tribological Properties of Polymers and Polymer-Based Composites. Chem. Chem. Technol. 2020, 14, 514-520. https://doi.org/10.23939/chcht14.04.514