Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Antibacterial Efficacy of Silver or Arsenic Doped Polymer Composites Against Several Kinds of Bacteria

Witold Brostow1, Marina Gahutishvili1, 2, Anthony W. Wren3, Timothy J. Keenan3, Chokchai Yatongchai3, Nathalie Hnatchuk1, Vijay Singh4
Affiliation: 
1 Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering and Department of Physics, University of North Texas, 3940 North Elm Street, Denton, TX 76207, USA 2 Department of Chemistry, Ivane Javakhishvili University, 3 Ilya Chavchavadze Ave., 0179 Tbilisi, Georgia 3 Inamori School of Engineering, Alfred University, Alfred, NY, USA 4 Department of Biological Sciences, University of North Texas, Denton. TX, USA. wkbrostow@gmail.com
DOI: 
https://doi.org/10.23939/chcht16.01.042
AttachmentSize
PDF icon full_text.pdf1.26 MB
Abstract: 
Structure and several properties of AgNO3 and As2O3 doped polymer composites have been investigated, including their antibacterial activity against E. coli, S. aureus, C. albicans and S. epidermidis. New silver or arsenic doped polymer composites have been characterized by an X-ray diffraction (XRD), a scanning electron microscopy combined with an energy dispersive X-ray spectroscopy (SEM/EDS) and ion release studies. The antibacterial evaluation of each of the composite samples was conducted using S. aureus in the liquid broth culture, with 10, 20 and 30 % of liquid extract added to the bacterial culture. Control S. aureus stocks were used for comparison at each time period and were recorded at 100 % at each time period. For samples with the PLA plasticizer the bacterial viability was significantly reduced for each composition containing Ag/As and was similar for each dosage concentration.
References: 

[1] Galya, T.; Sedlarik, V.; Kuritka, I.; Novotny, R.; Sedlarikova, J.; Sah, P. Antibacterial Poly(Vinyl Alcohol) Film Containing Silver Nanoparticles: Preparation and Characterization. J. Appl. Polym. Sci. 2008, 110 (5), 3178-3185. https://doi.org/10.1002/app.28908
https://doi.org/10.1002/app.28908

[2] Robbens, J.; Vanparys, C.; Nobels, I.; Blust, R., Van Hoecke, K., Janssen, C., De Schamphelaere, K., Roland, K., Blanchard, G., Silvestre, F. et al. Eco-, Geno- and Human Toxicology of Bio-Active Nanoparticles for Biomedical Applications. Toxicology 2010, 269, 170-181. https://doi.org/10.1016/j.tox.2009.11.002
https://doi.org/10.1016/j.tox.2009.11.002

[3] Chandran, S.P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract. Biotechnol. Prog. 2006, 22, 577-583. https://doi.org/10.1021/bp0501423
https://doi.org/10.1021/bp0501423

[4] Brostow, W.; Hagg Lobland, H.E.; Narkis, M. Sliding Wear, Viscoelasticity, and Brittleness of Polymers. J. Mater. Res. 2006, 21, 2422-2428. https://doi.org/10.1557/jmr.2006.0300
https://doi.org/10.1557/jmr.2006.0300

[5] Olea-Mejia, O.J.; Brostow, W.; Escobar-Halarcon, L.; Vigueras-Santiago, E. Tribological Properties of Polymer Nanohybrids Containing Gold Nanoparticles Obtained by Laser Ablation. J. Nanosci. Nanotechnol. 2012, 12, 2750-2755(6). https://doi.org/10.1166/jnn.2012.5737
https://doi.org/10.1166/jnn.2012.5737

[6] Brostow, W.; Hagg Lobland H.E. Materials: Introduction and Applications; John Wiley & Sons: Hoboken, NJ, 2017.

[7] Brostow, W.; Gahutishvili, M.; Gigauri, R.; Hagg Lobland, H.E.; Japaridze, S.; Lekishvili, N. Separation of Natural Trivalent Oxides of Arsenic and Antimony. Chem. Eng. J. 2010, 159, 24-26. https://doi.org/10.1016/j.cej.2010.02.016
https://doi.org/10.1016/j.cej.2010.02.016

[8] Barbakadze, K.; Brostow, W.; Datashvili, T.; Hnatchuk, N.; Lekishvili, N. Antibiocorrosive Epoxy-Based Coatings with Low Friction and High Scratch Resistance. Wear 2018, 394-395, 228-235. https://doi.org/10.1016/j.wear.2017.08.006
https://doi.org/10.1016/j.wear.2017.08.006

[9] Gakhutishvili, M.; Gigauri, R. Extraction of Arsenic from Mineral Resources and Industrial Waste. Georgia Chem. J. 2010, 4 (10), 53-54.

[10] Bakradze, E., Vodyanitskii, Y., Urushadze, T., Chankseliani, Z., Arabidze, M., About rationing of the heavy metals in soils of Georgia, Ann. Agrarian Sci. 2018, 16, 1-6.
https://doi.org/10.1016/j.aasci.2017.09.002

[11] Raffoux, E.; Rousselot, Ph., Poupon, Daniel , M.-T., Cassinat, B. , Delarue, R., Taksin, A.-L., Réa, D., , Buzyn, A. , Tibi, A. , Lebbé, G. et al., Combined Treatment With Arsenic Trioxide and All-Trans-Retinoic Acid in Patients With Relapsed Acute Promyelocytic Leukemia. J. Clin. Oncol. 2003, 21, 2326-2334. https://doi.org/10.1200/JCO.2003.01.149
https://doi.org/10.1200/JCO.2003.01.149

[12] Soignet, S.L., Tong, W.P., Hirschfeld, S., Warrell Jr., R.P. Clinical Study of an Organic Arsenical, Melarsoprol in Patients with Advanced Leukemia. Cancer Chemother. Pharmacol. 1999, 44, 417-421.
https://doi.org/10.1007/s002800050998

[13] Baláž, P.; Sedlák, J. Arsenic in Cancer Treatment: Challenges for Application of Realgar Nanoparticles (A Minireview). Toxins 2010, 2(6), 1568-1581. https://doi.org/10.3390/toxins2061568
https://doi.org/10.3390/toxins2061568

[14] Brostow, W.; Brumbley, S.; Gahutishvili, M.; Hnatchuk, N. Arsenic Antibacterial Polymer Composites Based on Poly(Vinyl Chloride). Macromol. Symp. 2016, 365, 258-262. https://doi.org/10.1002/masy.201650002
https://doi.org/10.1002/masy.201650002

[15] Skiba, M.; Pivovarov, A.; Vorobyova, V. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification. Chem. Chem. Technol. 2020, 14, 47-54. https://doi.org/10.23939/chcht14.01.047
https://doi.org/10.23939/chcht14.01.047

[16] Skiba, M.; Vorobyova, V.; Kovalenko, I.; Shakun, A. Synthesis of Tween-Coated Silver Nanoparticles by a Plasma-Chemical Method: Catalytic and Antimicrobial Activities. Chem. Chem. Technol. 2020, 14, 297-303. https://doi.org/10.23939/chcht14.03.297
https://doi.org/10.23939/chcht14.03.297

[17] Matyjas-Zgondek, E.; Bacciarelli, A.; Rybicki, E.; Szynkowska, M.I.; Kołodziejczyk, M., Antibacterial Properties of Silver-Finished Textiles, Fibres Text. East. Eur. 2008, 5, 101-107.

[18] Kancharla, R.; Vadeghar Ramesh, K.; Prabhakar Ginuga, R.; Sundergopal, S. Synthesis and Characterization of Indigenous Hydrophilized Polyvinylidene Fluoride Membrane for Drinking Water Purification: Experimental Study and Modeling Aspects. Chem. Chem. Technol. 2020, 14, 239-250. https://doi.org/10.23939/chcht14.02.239
https://doi.org/10.23939/chcht14.02.239

[19] Koval, I.; Starchevskyy, V. Gas Nature Effect on the Destruction of Various Microorganisms Under Cavitation Action. Chem. Chem. Technol. 2020, 14, 264-270. https://doi.org/10.23939/chcht14.02.264
https://doi.org/10.23939/chcht14.02.264

[20] Moeck, P.; Stone-Sundberg, J.; Snyder, T.J.; Kaminsky, W. Enlivening 300 Level General Education Classes on Nano-Science and Nano-Technology with 3D Printed Crystallographic Models. J. Mater. Educ. 2014, 36, 77-96.

[21] Acevedo, A.; Herrera-Posada, S. Introducing Viscoelasticity to Precollege Students through a Composite Bouncing Balls Hands-On Experiment. J. Mater. Educ. 2014, 36, 69-76.

[22] López-Martinez, A.; Mata-Jiménez, M.; Andrade, M; Alaniz-Lumbreraz, D.; Torres-Arguelles, V.; Olvera-González, E.; de la Rosa-Miranda, E.; Castaño, V.M. Non-Linear Voltage Control in Complex Electronic Materials Systems for Power Transmission:

- A Teaching Approach. J. Mater. Educ. 2014, 36, 97-105.
https://doi.org/10.1111/test.12051

[23] Steinberg, D.; Swilley, S. Creating Positive Materials Science Learning Experiences at a University Venue for 1000 Middle School Students. J. Mater. Educ. 2008, 30, 351-360.

[24] Vanasupa, L.; Chen, K.C.; Stolk, J.; Savage, R.; Harding, T.; London, B.; Hughes, W. Converting Traditional Materials Labs to Project-Based Learning Experiences: Aiding Students' Development of Higher-Order Cognitive Skills. J. Mater. Educ. 2008, 30, 281-286.
https://doi.org/10.1557/PROC-1046-W03-03

[25] Boice, J.N.; King, C.M.; Higginbotham, C.; Guerney, R.W. Molecular Recycling: Application of the Twelve Principles of Green Chemistry in the Diversion of Post-Consumer Poly(Lactic Acid) Waste. J. Mater. Educ. 2008, 30, 257-280.

[26] Spinelli, L.S., Lucas, E.F. Polymers in the Production of Crude Oil: I. Experimental Discipline to Teach Laboratory Tests to Evaluate Polymers Performance. J. Mater. Educ. 2017, 39, 125-130.

[27] Vianna, E.L.F., Figueiredo, V.V., Middea, A., Brandão, V.S., Bertolino, L.C., Spinelli, L.S. Polymers in the Production of Crude Oil: II: An Experimental Procedure to Prepare Polymeric Magnetic Nanocomposites. J. Mater. Educ. 2019, 41(1-2), 41-50.

[28] Carvalho, S.P., Palermo, L.C.M., Boak, L.S., Sorbie, K.S., Lucas, E.F. Polymers in the Production of Crude Oil: III: Static Compatibility and Adsorption Test Procedure for Scale Inhibition. J. Mater. Educ. 2019, 41(3-4), 95-102.

[29] Silva, J. da C., Maravilha, T.S.L., Nunes, R. de C.P., Spinelli, L.S., Lucas, E.F. Polymers in the Production of Crude Oil: IV. Extractiopn of Asphaltenes Fraction Using Soxhlet. J. Mater. Educ. 2019, 41(5-6), 149-156.

[30] Gedde, U.W., Hedenqvist, M.S. Fundamental Polymer Science, 2nd ed.; Springer Nature Switzerland AG, 2019. https://doi.org/10.1007/978-3-030-29794-7
https://doi.org/10.1007/978-3-030-29794-7

[31] Brostow, W., Fałtynowicz, H., Gencel, O., Grigoriev, A., Hagg Lobland, H.E., Zhang, D. Mechanical and Tribological Properties of Polymers and Polymer-Based Composites. Chem. Chem. Technol. 2020, 14, 514-520. https://doi.org/10.23939/chcht14.04.514
https://doi.org/10.23939/chcht14.04.514