Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions

Fadi Alakhras1, Huda Alghamdi1, Rabia Rehman2
Affiliation: 
1 Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, PO Box 1982, Dammam 31441, Saudi Arabia 2 Center for Inorganic Chemistry, Shcool of Chemistry, University of Punjab, Quaid-e-Campus, Lahore, Pakistan fadialakhras@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.02.407
AttachmentSize
PDF icon full_text.pdf952.77 KB
Abstract: 
Chemical modification of chitosan was successfully carried out using three derivatives namely: 3 hydroxybenzaldehyde, 2,3-dihydroxybenzaldehyde, and 3,5-di-tert-butyl-2-hydroxybenzaldehyde by a condensation reaction. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) surface area, thermal gravimetric analysis (TGA), and X-ray diffraction (XRD) methods were performed for characterization of the chitosan-derived Schiff base adsorbent materials. The efficiency of the prepared adsorbents in removing cobalt and nickel ions from aqueous solution was explored, and experimental data were analyzed using isothermal and kinetic models. The BET surface area of chemically modified chitosan was greatly enhanced 125.83 m2 g-1 with mesoporous characteristics. The maximum uptake was recorded at pH 5-6, while the maximum removal capacity was 243.90 mg g-1 for cobalt ions whereas 166.67 mg g 1 was achieved for nickel ions. The kinetic data were better fitted using pseudo-second-order.
References: 

[1] Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728-747. https://doi.org/10.1016/j.molliq.2018.12.001
https://doi.org/10.1016/j.molliq.2018.12.001

[2] Boamah, P.O.; Huang, Y.; Hua, M.; Zhang, Q.; Wu, J.; Onumah, J.; Sam-Amoah, L.K.; Boamah, P.O. Sorption of Heavy Metal Ions onto Carboxylate Chitosan Derivatives - A Mini-Review. Ecotoxicol. Environ. Saf. 2015, 116, 113-120. https://doi.org/10.1016/j.ecoenv.2015.01.012
https://doi.org/10.1016/j.ecoenv.2015.01.012

[3] Al-Shahrani, H.; Alakhras, F.; Al-Abbad, E.; Al-Mazaideh, G.M.; Hosseini-Bandegharaei, A.; Ouerfelli, N. Sorption of Cobalt (II) Ions from Aqueous Solutions Using Chemically Modified Chitosan. Glob. Nest J. 2018, 20, 620-627. https://doi.org/10.30955/gnj.002804
https://doi.org/10.30955/gnj.002804

[4] Alakhras, F.; Al-Shahrani, H.; Al-Abbad, E.; Al-Rimawi, F.; Ouerfelli, N. Removal of Pb(II) Metal Ions from Aqueous Solutions Using Chitosan-Vanillin Derivatives of Chelating Polymers. Pol. J. Environ. Stud. 2019, 28, 1523-1534. https://dspace.alquds.edu/handle/20.500.12213/5074
https://doi.org/10.15244/pjoes/89545

[5] Alakhras, F.; Alabbad, E.; Alzamil, N.; Abouzeid, F.M.; Ouer-felli, N. Contribution to Modelling the Effect of Temperature on Removal of Nickel Ions by Adsorption on Nano-Bentonite. Asian J. Chem. 2018, 30, 1147-1156.
https://doi.org/10.14233/ajchem.2018.21252

[6] Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans - A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43-56. https://doi.org/10.1016/j.tox.2017.05.015
https://doi.org/10.1016/j.tox.2017.05.015

[7] Alakhras, F.; Bel Hadj Hmida, E.S.; Anastopoulos, I.; Trabelsi, Z.; Mabrouk, W.; Ouerfelli, N.; Fauvarque, J.F. Diffusion Analysis and Modeling of Kinetic Behavior for Treatment of Brine Water Using Electrodialysis Process. Water Sci. Eng. 2021, 14, 36-45. https://doi.org/10.1016/j.wse.2020.05.002
https://doi.org/10.1016/j.wse.2020.05.002

[8] Junejo, R.; Memon, S.; Durmaz, F.; Ahmed, A.A.; Memon, F.N.; Jalbani, N.S.; Memon, S.S.; Bhatti, A.A. Synthesis of Piperdinomethylcalix[4]arene Attached Silica Resin for the Removal of Metal Ions from Water: Equilibrium, Thermodynamic and Kinetic Modelling Studies. Advanced Journal of Chemistry-Section A 2020, 3, 680-691. http://dx.doi.org/10.33945/SAMI/AJCA.2020.5.11

[9] Junejo, R.; Memon, S.; Palabiyik, I.M. Efficient Adsorption of Heavy Metal Ions onto Diethylamine Functionalized Calix[4]arene Based Silica Resin. Eurasian Chemical Communications 2020, 2, 785-797. http://doi.org/10.33945/sami/ecc.2020.7.6
https://doi.org/10.33945/SAMI/ECC.2020.7.6

[10] Kanwal, F.; Rehman, R.; Warraich, H. Synthesis of Novel Polyaniline Composites with Eriobotrya japonica Leaves for Removal of Methyl Red Dye from Wastewater. Bulg. Chem. Commun. 2019, 51, 586-591. http://doi.org/10.34049/bcc.51.4.5131

[11] Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon-Based Materials: A Review of Adsorbents for Inorganic and Organic Compounds. Materials Advances 2021, 2, 598-627. https://doi.org/10.1039/D0MA00087F
https://doi.org/10.1039/D0MA00087F

[12] Adegoke, K.A.; Oyewole, R.O.; Lasisi, B.M.; Bello, O.S. Abatement of Organic Pollutants Using Fly Ash-Based Adsorbents. Water Sci. Technol. 2017, 76, 2580-2592. https://doi.org/10.2166/wst.2017.437
https://doi.org/10.2166/wst.2017.437

[13] Zhang, Y.; Xia, K.; Liu, X.; Chen, Z.; Du, H.; Zhang, X. Synthesis of Cationic-Modified Silica Gel and its Adsorption Properties for Anionic Dyes. J. Taiwan Inst. Chem. Eng. 2019, 102, 1-8. https://doi.org/10.1016/j.jtice.2019.05.005
https://doi.org/10.1016/j.jtice.2019.05.005

[14] Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11-24. https://doi.org/10.1016/j.cej.2009.10.029
https://doi.org/10.1016/j.cej.2009.10.029

[15] Akhouairi, S.; Ouachtak, H.; Addi, A.A.; Jada, A.; Douch, J. Natural Sawdust as an Adsorbent for the Eriochrome Black T Dye Removal from Aqueous Solution. Water Air Soil Pollut. 2019, 230, 181. https://doi.org/10.1007/s11270-019-4234-6
https://doi.org/10.1007/s11270-019-4234-6

[16] Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Bhatti, H.N.; Nouren, S. Dyes Adsorption Using Clay and Modified Clay: A Review. J. Mol. Liq. 2018, 256, 395-407. https://doi.org/10.1016/j.molliq.2018.02.034
https://doi.org/10.1016/j.molliq.2018.02.034

[17] Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y. Novel Cyclodextrin-Based Adsorbents for Removing Pollutants from Wastewater: A Critical Review. Chemosphere 2020, 241, 125043. https://doi.org/10.1016/j.chemosphere.2019.125043
https://doi.org/10.1016/j.chemosphere.2019.125043

[18] Hossain, M.F.; Akther, N.; Zhou, Y. Recent Advancements in Graphene Adsorbents for Wastewater Treatment: Current Status and Challenges. Chin. Chem. Lett. 2020, 31, 2525-2538. https://doi.org/10.1016/j.cclet.2020.05.011
https://doi.org/10.1016/j.cclet.2020.05.011

[19] Habiba, U.; Siddique, T.A.; Joo, T.C.; Salleh, A.; Ang, B.C.; Afifi, A.M. Synthesis of Chitosan/Polyvinyl Alcohol/Zeolite Composite for Removal of Methyl Orange, Congo Red, and Chro-mium(VI) by Flocculation/Adsorption. Carbohydr. Polym. 2017, 157, 1568-1576. https://doi.org/10.1016/j.carbpol.2016.11.037
https://doi.org/10.1016/j.carbpol.2016.11.037

[20] Haldorai, Y.; Shim, J.- J. An Efficient Removal of Methyl Orange dye from Aqueous Solution by Adsorption onto Chito-san/MgO Composite: A Novel Reusable Adsorbent. Appl. Surf. Sci. 2014, 292, 447-453. https://doi.org/10.1016/j.apsusc.2013.11.158
https://doi.org/10.1016/j.apsusc.2013.11.158

[21] Alakhras, F. Biosorption of Cd(II) Ions from Aqueous Solution Using Chitosan-iso-Vanillin as a Low-Cost Sorbent: Equilibrium, Kinetics, and Thermodynamic Studies. Arab. J. Sci. Eng. 2019, 44, 279-288. https://doi.org/10.1007/s13369-018-3589-0
https://doi.org/10.1007/s13369-018-3589-0

[22] Al-Abbad, E.; Alakhras, F.; Anastopoulos, I.; Das, D.; Al-Arfaj, A.; Ouerfelli, N.; Hosseini-Bandegharaei, A. Chitosan-Based Materials for the Removal of Nickel Ions from Aqueous Solutions. Russ. J. Phys. Chem. A 2020, 94, 748.
https://doi.org/10.1134/S0036024420040032

[23] Saheed, I.O.; Oh, W.-D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants - A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889
https://doi.org/10.1016/j.jhazmat.2020.124889

[24] Zalloum, H.M.; Al-Qodah, Z.; Mubarak, M.S. Copper Adsorption on Chitosan-Derived Schiff Bases. J. Macromol. Sci. A 2008, 46, 46-57. https://doi.org/10.1080/10601320802515225
https://doi.org/10.1080/10601320802515225

[25] Al-Abbad, E.; Alakhras, F. Removal of Dye Acid Red 1 from Aqueous Solutions Using Chitosan-iso-Vanillin Sorbent Material. Indones. J. Sci. Technol. 2020, 5, 352-365. https://doi.org/10.17509/ijost.v5i3.24986
https://doi.org/10.17509/ijost.v5i3.24986

[26] Li, Q.; Yang, D.; Ma, G.; Xu, Q.; Chen, X.; Lu, F.; Nie, J. Synthesis and Characterization of Chitosan-Based Hydrogels. Int. J. Biol. Macromol. 2009, 44, 121-127. https://doi.org/10.1016/j.ijbiomac.2008.11.001
https://doi.org/10.1016/j.ijbiomac.2008.11.001

[27] Samuels, R.J. Solid-State Characterization of the Structure of Chitosan Films. J. Polym. Sci. B Polym. Phys. 1981, 19, 1081-1105. https://doi.org/10.1002/pol.1981.180190706
https://doi.org/10.1002/pol.1981.180190706

[28] Yazdani, M.R.; Virolainen, E.; Conley, K.; Vahala, R. Chito-san-Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abate-ment of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers 2018, 10, 25. https://doi.org/10.3390/polym10010025
https://doi.org/10.3390/polym10010025

[29] Madala, S.; Nadavala, S.K.; Vudagandla, S.; Boddu, V.M.; Abburi, K. Equilibrium, Kinetics and Thermodynamics of Cadmium (II) Biosorption on to Composite Chitosan Biosorbent. Arab. J. Chem. 2013, 10, S1883. https://cyberleninka.org/viewer_images/948363/f/1.png
https://doi.org/10.1016/j.arabjc.2013.07.017

[30] Mengatto, L.; Ferreyra, M.G.; Rubiolo, A.; Rintoul, I.; Luna, J. (2013). Hydrophilic and Hydrophobic Interactions in Cross-Linked Chitosan Membranes. Mater. Chem. Phys. 2013, 139, 181-186. http://dx.doi.org/10.1016/j.matchemphys.2013.01.019
https://doi.org/10.1016/j.matchemphys.2013.01.019

[31] Saravanane, R.; Sundararajan, T.; Reddy, S.S. Efficiency of Chemically Modified Low Cost Adsorbents for the Removal of Heavy Metals from Wastewater: A Comparative Study. Indian J. Environ. Health 2002, 44, 78-87.

[32] Lima, E.C.; Adebayo, M.A.; Machado, F.M. Kinetic and Equilibrium Models of Adsorption in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications; Springer: Bergmann, 2015.
https://doi.org/10.1007/978-3-319-18875-1_3

[33] Langmuir, I. The Constitutional and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221-2295. https://doi.org/10.1021/ja02268a002
https://doi.org/10.1021/ja02268a002

[34] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-470.
https://doi.org/10.1515/zpch-1907-5723

[35] Mobasherpour, I.; Salahi, E.; Pazouki, M. Comparative of the Removal of Pb2+, Cd2+ and Ni2+ by Nano Crystallite Hydroxyapatite from Aqueous Solutions: Adsorption Isotherm Study. Arab. J. Chem. 2012, 5, 439-446. https://doi.org/10.1016/j.arabjc.2010.12.022
https://doi.org/10.1016/j.arabjc.2010.12.022

[36] Webber, T.W.; Chakravorti, R.K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20, 228-238. https://doi.org/10.1002/aic.690200204
https://doi.org/10.1002/aic.690200204

[37] Paulino, A.T.; Guilherme, M.R.; Reis, A.V.; Tambourgi, E.B.; Nozaki, J.; Muniz, E.C. Capacity of Adsorption of Pb2+ and Ni2+ from Aqueous Solutions by Chitosan Produced from Silkworm Chrysalides in Different Degrees of Deacetylation. J. Hazard. Mater. 2007, 147, 139-147. https://doi.org/10.1016/j.jhazmat.2006.12.059
https://doi.org/10.1016/j.jhazmat.2006.12.059

[38] Tirtom, V.N.; Dinçer, A.; Becerik, S.; Aydemir, T.; Çelik, A. Comparative Adsorption of Ni(II) and Cd(II) Ions on Epichloro-hydrin Crosslinked Chitosan-Clay Composite Beads in Aqueous Solution. Chem. Eng. J. 2012, 197, 379-386.
https://doi.org/10.1016/j.cej.2012.05.059

[39] Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of Chito-san/Magnetite Composite Beads and their Application for Removal of Pb(II) and Ni(II) from Aqueous Solution. Mater. Sci. Eng. C 2010, 30, 304-310. https://doi.org/10.1016/j.msec.2009.11.008
https://doi.org/10.1016/j.msec.2009.11.008

[40] Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K. Adsorptive Removal of Copper and Nickel Ions from Water Using Chitosan Coated PVC Beads. Bioresour. Technol. 2009, 100, 194-199. https://doi.org/10.1016/j.biortech.2008.05.041
https://doi.org/10.1016/j.biortech.2008.05.041

[41] Wang, H.; Tang, H.; Liu, Z.; Zhang, X.; Hao, Z.; Liu, Z. Removal of Cobalt(II) Ion from Aqueous Solution by Chitosan-Montmorillonite. J. Environ. Sci. (China) 2014, 26, 1879-1884. https://doi.org/10.1016/j.jes.2014.06.021
https://doi.org/10.1016/j.jes.2014.06.021

[42] Krishnan, K.A.; Anirudhan, T.S. Kinetic and Equilibrium Modelling of Cobalt(II) Adsorption onto Bagasse Pith Based Sul-phurised Activated Carbon. Chem. Eng. J. 2008, 137, 257-264. https://doi.org/10.1016/j.cej.2007.04.029
https://doi.org/10.1016/j.cej.2007.04.029

[43] Manohar, D.M.; Noeline, B.F.; Anirudhan, T.S. Adsorption Performance of Al-Pillared Bentonite Clay for the Removal of Cobalt(II) from Aqueous Phase. Appl. Clay Sci. 2006, 31, 194-206. https://doi.org/10.1016/j.clay.2005.08.008
https://doi.org/10.1016/j.clay.2005.08.008