Use of Chemically Modified Chitosan for the Adsorptive Removal of Toxic Metal Ions in Aqueous Solutions
Attachment | Size |
---|---|
full_text.pdf | 952.77 KB |
[1] Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The Utilization of Leaf-Based Adsorbents for Dyes Removal: A Review. J. Mol. Liq. 2019, 276, 728-747. https://doi.org/10.1016/j.molliq.2018.12.001
https://doi.org/10.1016/j.molliq.2018.12.001
[2] Boamah, P.O.; Huang, Y.; Hua, M.; Zhang, Q.; Wu, J.; Onumah, J.; Sam-Amoah, L.K.; Boamah, P.O. Sorption of Heavy Metal Ions onto Carboxylate Chitosan Derivatives - A Mini-Review. Ecotoxicol. Environ. Saf. 2015, 116, 113-120. https://doi.org/10.1016/j.ecoenv.2015.01.012
https://doi.org/10.1016/j.ecoenv.2015.01.012
[3] Al-Shahrani, H.; Alakhras, F.; Al-Abbad, E.; Al-Mazaideh, G.M.; Hosseini-Bandegharaei, A.; Ouerfelli, N. Sorption of Cobalt (II) Ions from Aqueous Solutions Using Chemically Modified Chitosan. Glob. Nest J. 2018, 20, 620-627. https://doi.org/10.30955/gnj.002804
https://doi.org/10.30955/gnj.002804
[4] Alakhras, F.; Al-Shahrani, H.; Al-Abbad, E.; Al-Rimawi, F.; Ouerfelli, N. Removal of Pb(II) Metal Ions from Aqueous Solutions Using Chitosan-Vanillin Derivatives of Chelating Polymers. Pol. J. Environ. Stud. 2019, 28, 1523-1534. https://dspace.alquds.edu/handle/20.500.12213/5074
https://doi.org/10.15244/pjoes/89545
[5] Alakhras, F.; Alabbad, E.; Alzamil, N.; Abouzeid, F.M.; Ouer-felli, N. Contribution to Modelling the Effect of Temperature on Removal of Nickel Ions by Adsorption on Nano-Bentonite. Asian J. Chem. 2018, 30, 1147-1156.
https://doi.org/10.14233/ajchem.2018.21252
[6] Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans - A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43-56. https://doi.org/10.1016/j.tox.2017.05.015
https://doi.org/10.1016/j.tox.2017.05.015
[7] Alakhras, F.; Bel Hadj Hmida, E.S.; Anastopoulos, I.; Trabelsi, Z.; Mabrouk, W.; Ouerfelli, N.; Fauvarque, J.F. Diffusion Analysis and Modeling of Kinetic Behavior for Treatment of Brine Water Using Electrodialysis Process. Water Sci. Eng. 2021, 14, 36-45. https://doi.org/10.1016/j.wse.2020.05.002
https://doi.org/10.1016/j.wse.2020.05.002
[8] Junejo, R.; Memon, S.; Durmaz, F.; Ahmed, A.A.; Memon, F.N.; Jalbani, N.S.; Memon, S.S.; Bhatti, A.A. Synthesis of Piperdinomethylcalix[4]arene Attached Silica Resin for the Removal of Metal Ions from Water: Equilibrium, Thermodynamic and Kinetic Modelling Studies. Advanced Journal of Chemistry-Section A 2020, 3, 680-691. http://dx.doi.org/10.33945/SAMI/AJCA.2020.5.11
[9] Junejo, R.; Memon, S.; Palabiyik, I.M. Efficient Adsorption of Heavy Metal Ions onto Diethylamine Functionalized Calix[4]arene Based Silica Resin. Eurasian Chemical Communications 2020, 2, 785-797. http://doi.org/10.33945/sami/ecc.2020.7.6
https://doi.org/10.33945/SAMI/ECC.2020.7.6
[10] Kanwal, F.; Rehman, R.; Warraich, H. Synthesis of Novel Polyaniline Composites with Eriobotrya japonica Leaves for Removal of Methyl Red Dye from Wastewater. Bulg. Chem. Commun. 2019, 51, 586-591. http://doi.org/10.34049/bcc.51.4.5131
[11] Sabzehmeidani, M.M.; Mahnaee, S.; Ghaedi, M.; Heidari, H.; Roy, V.A.L. Carbon-Based Materials: A Review of Adsorbents for Inorganic and Organic Compounds. Materials Advances 2021, 2, 598-627. https://doi.org/10.1039/D0MA00087F
https://doi.org/10.1039/D0MA00087F
[12] Adegoke, K.A.; Oyewole, R.O.; Lasisi, B.M.; Bello, O.S. Abatement of Organic Pollutants Using Fly Ash-Based Adsorbents. Water Sci. Technol. 2017, 76, 2580-2592. https://doi.org/10.2166/wst.2017.437
https://doi.org/10.2166/wst.2017.437
[13] Zhang, Y.; Xia, K.; Liu, X.; Chen, Z.; Du, H.; Zhang, X. Synthesis of Cationic-Modified Silica Gel and its Adsorption Properties for Anionic Dyes. J. Taiwan Inst. Chem. Eng. 2019, 102, 1-8. https://doi.org/10.1016/j.jtice.2019.05.005
https://doi.org/10.1016/j.jtice.2019.05.005
[14] Wang, S.; Peng, Y. Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment. Chem. Eng. J. 2010, 156, 11-24. https://doi.org/10.1016/j.cej.2009.10.029
https://doi.org/10.1016/j.cej.2009.10.029
[15] Akhouairi, S.; Ouachtak, H.; Addi, A.A.; Jada, A.; Douch, J. Natural Sawdust as an Adsorbent for the Eriochrome Black T Dye Removal from Aqueous Solution. Water Air Soil Pollut. 2019, 230, 181. https://doi.org/10.1007/s11270-019-4234-6
https://doi.org/10.1007/s11270-019-4234-6
[16] Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Bhatti, H.N.; Nouren, S. Dyes Adsorption Using Clay and Modified Clay: A Review. J. Mol. Liq. 2018, 256, 395-407. https://doi.org/10.1016/j.molliq.2018.02.034
https://doi.org/10.1016/j.molliq.2018.02.034
[17] Liu, Q.; Zhou, Y.; Lu, J.; Zhou, Y. Novel Cyclodextrin-Based Adsorbents for Removing Pollutants from Wastewater: A Critical Review. Chemosphere 2020, 241, 125043. https://doi.org/10.1016/j.chemosphere.2019.125043
https://doi.org/10.1016/j.chemosphere.2019.125043
[18] Hossain, M.F.; Akther, N.; Zhou, Y. Recent Advancements in Graphene Adsorbents for Wastewater Treatment: Current Status and Challenges. Chin. Chem. Lett. 2020, 31, 2525-2538. https://doi.org/10.1016/j.cclet.2020.05.011
https://doi.org/10.1016/j.cclet.2020.05.011
[19] Habiba, U.; Siddique, T.A.; Joo, T.C.; Salleh, A.; Ang, B.C.; Afifi, A.M. Synthesis of Chitosan/Polyvinyl Alcohol/Zeolite Composite for Removal of Methyl Orange, Congo Red, and Chro-mium(VI) by Flocculation/Adsorption. Carbohydr. Polym. 2017, 157, 1568-1576. https://doi.org/10.1016/j.carbpol.2016.11.037
https://doi.org/10.1016/j.carbpol.2016.11.037
[20] Haldorai, Y.; Shim, J.- J. An Efficient Removal of Methyl Orange dye from Aqueous Solution by Adsorption onto Chito-san/MgO Composite: A Novel Reusable Adsorbent. Appl. Surf. Sci. 2014, 292, 447-453. https://doi.org/10.1016/j.apsusc.2013.11.158
https://doi.org/10.1016/j.apsusc.2013.11.158
[21] Alakhras, F. Biosorption of Cd(II) Ions from Aqueous Solution Using Chitosan-iso-Vanillin as a Low-Cost Sorbent: Equilibrium, Kinetics, and Thermodynamic Studies. Arab. J. Sci. Eng. 2019, 44, 279-288. https://doi.org/10.1007/s13369-018-3589-0
https://doi.org/10.1007/s13369-018-3589-0
[22] Al-Abbad, E.; Alakhras, F.; Anastopoulos, I.; Das, D.; Al-Arfaj, A.; Ouerfelli, N.; Hosseini-Bandegharaei, A. Chitosan-Based Materials for the Removal of Nickel Ions from Aqueous Solutions. Russ. J. Phys. Chem. A 2020, 94, 748.
https://doi.org/10.1134/S0036024420040032
[23] Saheed, I.O.; Oh, W.-D.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants - A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889
https://doi.org/10.1016/j.jhazmat.2020.124889
[24] Zalloum, H.M.; Al-Qodah, Z.; Mubarak, M.S. Copper Adsorption on Chitosan-Derived Schiff Bases. J. Macromol. Sci. A 2008, 46, 46-57. https://doi.org/10.1080/10601320802515225
https://doi.org/10.1080/10601320802515225
[25] Al-Abbad, E.; Alakhras, F. Removal of Dye Acid Red 1 from Aqueous Solutions Using Chitosan-iso-Vanillin Sorbent Material. Indones. J. Sci. Technol. 2020, 5, 352-365. https://doi.org/10.17509/ijost.v5i3.24986
https://doi.org/10.17509/ijost.v5i3.24986
[26] Li, Q.; Yang, D.; Ma, G.; Xu, Q.; Chen, X.; Lu, F.; Nie, J. Synthesis and Characterization of Chitosan-Based Hydrogels. Int. J. Biol. Macromol. 2009, 44, 121-127. https://doi.org/10.1016/j.ijbiomac.2008.11.001
https://doi.org/10.1016/j.ijbiomac.2008.11.001
[27] Samuels, R.J. Solid-State Characterization of the Structure of Chitosan Films. J. Polym. Sci. B Polym. Phys. 1981, 19, 1081-1105. https://doi.org/10.1002/pol.1981.180190706
https://doi.org/10.1002/pol.1981.180190706
[28] Yazdani, M.R.; Virolainen, E.; Conley, K.; Vahala, R. Chito-san-Zinc(II) Complexes as a Bio-Sorbent for the Adsorptive Abate-ment of Phosphate: Mechanism of Complexation and Assessment of Adsorption Performance. Polymers 2018, 10, 25. https://doi.org/10.3390/polym10010025
https://doi.org/10.3390/polym10010025
[29] Madala, S.; Nadavala, S.K.; Vudagandla, S.; Boddu, V.M.; Abburi, K. Equilibrium, Kinetics and Thermodynamics of Cadmium (II) Biosorption on to Composite Chitosan Biosorbent. Arab. J. Chem. 2013, 10, S1883. https://cyberleninka.org/viewer_images/948363/f/1.png
https://doi.org/10.1016/j.arabjc.2013.07.017
[30] Mengatto, L.; Ferreyra, M.G.; Rubiolo, A.; Rintoul, I.; Luna, J. (2013). Hydrophilic and Hydrophobic Interactions in Cross-Linked Chitosan Membranes. Mater. Chem. Phys. 2013, 139, 181-186. http://dx.doi.org/10.1016/j.matchemphys.2013.01.019
https://doi.org/10.1016/j.matchemphys.2013.01.019
[31] Saravanane, R.; Sundararajan, T.; Reddy, S.S. Efficiency of Chemically Modified Low Cost Adsorbents for the Removal of Heavy Metals from Wastewater: A Comparative Study. Indian J. Environ. Health 2002, 44, 78-87.
[32] Lima, E.C.; Adebayo, M.A.; Machado, F.M. Kinetic and Equilibrium Models of Adsorption in Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications; Springer: Bergmann, 2015.
https://doi.org/10.1007/978-3-319-18875-1_3
[33] Langmuir, I. The Constitutional and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221-2295. https://doi.org/10.1021/ja02268a002
https://doi.org/10.1021/ja02268a002
[34] Freundlich, H.M.F. Over the Adsorption in Solution. J. Phys. Chem. 1906, 57, 385-470.
https://doi.org/10.1515/zpch-1907-5723
[35] Mobasherpour, I.; Salahi, E.; Pazouki, M. Comparative of the Removal of Pb2+, Cd2+ and Ni2+ by Nano Crystallite Hydroxyapatite from Aqueous Solutions: Adsorption Isotherm Study. Arab. J. Chem. 2012, 5, 439-446. https://doi.org/10.1016/j.arabjc.2010.12.022
https://doi.org/10.1016/j.arabjc.2010.12.022
[36] Webber, T.W.; Chakravorti, R.K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20, 228-238. https://doi.org/10.1002/aic.690200204
https://doi.org/10.1002/aic.690200204
[37] Paulino, A.T.; Guilherme, M.R.; Reis, A.V.; Tambourgi, E.B.; Nozaki, J.; Muniz, E.C. Capacity of Adsorption of Pb2+ and Ni2+ from Aqueous Solutions by Chitosan Produced from Silkworm Chrysalides in Different Degrees of Deacetylation. J. Hazard. Mater. 2007, 147, 139-147. https://doi.org/10.1016/j.jhazmat.2006.12.059
https://doi.org/10.1016/j.jhazmat.2006.12.059
[38] Tirtom, V.N.; Dinçer, A.; Becerik, S.; Aydemir, T.; Çelik, A. Comparative Adsorption of Ni(II) and Cd(II) Ions on Epichloro-hydrin Crosslinked Chitosan-Clay Composite Beads in Aqueous Solution. Chem. Eng. J. 2012, 197, 379-386.
https://doi.org/10.1016/j.cej.2012.05.059
[39] Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of Chito-san/Magnetite Composite Beads and their Application for Removal of Pb(II) and Ni(II) from Aqueous Solution. Mater. Sci. Eng. C 2010, 30, 304-310. https://doi.org/10.1016/j.msec.2009.11.008
https://doi.org/10.1016/j.msec.2009.11.008
[40] Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K. Adsorptive Removal of Copper and Nickel Ions from Water Using Chitosan Coated PVC Beads. Bioresour. Technol. 2009, 100, 194-199. https://doi.org/10.1016/j.biortech.2008.05.041
https://doi.org/10.1016/j.biortech.2008.05.041
[41] Wang, H.; Tang, H.; Liu, Z.; Zhang, X.; Hao, Z.; Liu, Z. Removal of Cobalt(II) Ion from Aqueous Solution by Chitosan-Montmorillonite. J. Environ. Sci. (China) 2014, 26, 1879-1884. https://doi.org/10.1016/j.jes.2014.06.021
https://doi.org/10.1016/j.jes.2014.06.021
[42] Krishnan, K.A.; Anirudhan, T.S. Kinetic and Equilibrium Modelling of Cobalt(II) Adsorption onto Bagasse Pith Based Sul-phurised Activated Carbon. Chem. Eng. J. 2008, 137, 257-264. https://doi.org/10.1016/j.cej.2007.04.029
https://doi.org/10.1016/j.cej.2007.04.029
[43] Manohar, D.M.; Noeline, B.F.; Anirudhan, T.S. Adsorption Performance of Al-Pillared Bentonite Clay for the Removal of Cobalt(II) from Aqueous Phase. Appl. Clay Sci. 2006, 31, 194-206. https://doi.org/10.1016/j.clay.2005.08.008
https://doi.org/10.1016/j.clay.2005.08.008