Isolation of Antibacterial Nano-Hydroxyapatite Biomaterial from Waste Buffalo Bone and Its Characterization
Attachment | Size |
---|---|
full_text.pdf | 1.28 MB |
[1] Manalu, J.L.; Soegijono, B.; Indrani, D.J. Characterization of Hydroxyapatite Derived from Bovine Bone. Asian J. Appl. Sci.2015, 3 (4), 758-765.
[2] Lim, K.T.; Kim, J.W.; Kim, J.; Chung, J.H. Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones. J. Biosyst. Eng.2014, 39, 227-234. https://doi.org/10.5307/jbe.2014.39.3.227
https://doi.org/10.5307/JBE.2014.39.3.227
[3] Ooi, C.Y.; Hamdi, M.; Ramesh, S. Properties of Hydroxyapatite Produced by Annealing of Bovine Bone. Ceram. Int.2007, 33, 1171-1177. https://doi.org/10.1016/j.ceramint.2006.04.001
https://doi.org/10.1016/j.ceramint.2006.04.001
[4] Kolmas, J.; Groszyk, E.; Kwiatkowska, R.D. Substituted Hydroxyapatites with Antibacterial Properties. Biomed Res. Int.2014, 2014,Article ID 178123. https://doi.org/10.1155/2014/178123
https://doi.org/10.1155/2014/178123
[5] Rana, M.; Akhtar, N.; Rahman, S.; Hasan, Z. Extraction and Characterization of Hydroxyapatite from Bovine Cortical Bone and Effect of Radiation. Int. J. Biosci.2017, 11, 20-30. https://doi.org/10.12692/ijb/11.3.20-30
https://doi.org/10.12692/ijb/11.3.20-30
[6] Balu, S.; Sundaradoss, M. V.; Andra, S.; Jeevanandam, J. Facile Biogenic Fabrication of Hydroxyapatite Nanorods Using Cuttlefish Bone and Their Bactericidal and Biocompatibility Study. Beilstein J. Nanotechnol.2020, 11, 285-295. https://doi.org/10.3762/bjnano.11.21.
https://doi.org/10.3762/bjnano.11.21
[7]Savvova, O. Biocide Apatite Glass-Ceramic Materials for Bone Endoprosthetics. Chem. Chem. Technol. 2013, 7, 109-112.https://doi.org/10.23939/chcht07.01.109
https://doi.org/10.23939/chcht07.01.109
[8]Savvova, О.; Babich, O.; Fesenko, O. Investigation of Structure Formation in Calciumsilicophosphate Glass-Ceramic Coatings for Dental Implants. Chem. Chem. Technol. 2018, 12, 244-250. https://doi.org/10.23939/chcht12.02.244
https://doi.org/10.23939/chcht12.02.244
[9]Nur, A.; Budiman, A. W.; Jumari, A.; Nazriati, N.; Fajaroh.; F. Electrosynthesis of Ni-Co/Hydroxyapatite As a Catalyst for Hydrogen Generation via the Hydrolysis of Aqueous Sodium Borohydride [NaBH4] Solutions. Chem. Chem. Technol. 2021, 15, 389-394.https://doi.org/10.23939/chcht15.03.389
https://doi.org/10.23939/chcht15.03.389
[10] Singh, G.; Singh, R.P.; Jolly, S.S. Customized Hydroxyapatites for Bone-Tissue Engineering and Drug Delivery Applications: A Review. J. Sol-Gel Sci. Technol.2020, 94, 505-530. https://doi.org/10.1007/s10971-020-05222-1
https://doi.org/10.1007/s10971-020-05222-1
[11] Fathi, M.H.; Hanifi, A.; Mortazavi, V. Preparation and Bioactivity Evaluation of Bone-like Hydroxyapatite Nanopowder. J. Mater. Process. Technol.2008, 202(1-3), 536-542. https://doi.org/10.1016/j.jmatprotec.2007.10.004
https://doi.org/10.1016/j.jmatprotec.2007.10.004
[12] Eshtiagh-Hosseini, H.; Housaindokht, M.R.; Chahkandi, M. Effects of Parameters of Sol-Gel Process on the Phase Evolution of Sol-Gel-Derived Hydroxyapatite. Mater. Chem. Phys.2007, 106(2-3), 310-316. https://doi.org/10.1016/j.matchemphys.2007.06.002
https://doi.org/10.1016/j.matchemphys.2007.06.002
[13] Han, Y.C.; Wang, X.Y.; Li, S.P. Change of Phase Composition and Morphology of Sonochemically Synthesised Hydroxyapatite Nanoparticles with Glycosaminoglycans during Thermal Treatment. Adv. Appl. Ceram.2009, 108, 400-405. https://doi.org/10.1179/174367609X414134
https://doi.org/10.1179/174367609X414134
[14] Giardina, M.A.; Fanovich, M.A. Synthesis of Nanocrystalline Hydroxyapatite from Ca[OH]2 and H3PO4 Assisted by Ultrasonic Irradiation. Ceram. Int.2010, 36, 1961-1969. https://doi.org/10.1016/j.ceramint.2010.05.008
https://doi.org/10.1016/j.ceramint.2010.05.008
[15] Barakat, N.A.M.; Khil, M.S.; Omran, A.M.; Sheikh, F.A.; Kim, H.Y. Extraction of Pure Natural Hydroxyapatite from the Bovine Bones Bio Waste by Three Different Methods. J. Mater. Process. Technol.2009, 209(7), 3408-3415. https://doi.org/10.1016/j.jmatprotec.2008.07.040
https://doi.org/10.1016/j.jmatprotec.2008.07.040
[16] Neira, I.S.; Guitián, F.; Taniguchi, T.; Watanabe, T.; Yoshimura, M. Hydrothermal Synthesis of Hydroxyapatite Whiskers with Sharp Faceted Hexagonal Morphology. J. Mater. Sci.2008, 43(7), 2171-2178. https://doi.org/10.1007/s10853-007-2032-9
https://doi.org/10.1007/s10853-007-2032-9
[17] Iqbal, N.; Abdul Kadir, M.R.; Nik Malek, N.A.N.; Humaimi Mahmood, N.; Raman Murali, M.; Kamarul, T. Rapid Microwave Assisted Synthesis and Characterization of Nanosized Silver-Doped Hydroxyapatite with Antibacterial Properties. Mater. Lett.2012, 89, 118-122. https://doi.org/10.1016/j.matlet.2012.08.057
https://doi.org/10.1016/j.matlet.2012.08.057
[18] Hassan, M.N.; Mahmoud, M.M.; El-Fattah, A.A.; Kandil, S. Microwave-Assisted Preparation of Nano-Hydroxyapatite for Bone Substitutes. Ceram. Int.2016, 42(3), 3725-3744. https://doi.org/10.1016/j.ceramint.2015.11.044
https://doi.org/10.1016/j.ceramint.2015.11.044
[19] Ronan, K.; Kannan, M.B. Novel Sustainable Route for Synthesis of Hydroxyapatite Biomaterial from Biowastes. ACS Sustain. Chem. Eng.2017, 5(3), 2237-2245. https://doi.org/10.1021/acssuschemeng.6b02515
https://doi.org/10.1021/acssuschemeng.6b02515
[20] Abdulrahman, I.; Tijani, H.I.; Mohammed, B.A.; Saidu, H.; Yusuf, H.; Ndejiko Jibrin, M.; Mohammed, S. From Garbage to Biomaterials: An Overview on Egg Shell Based Hydroxyapatite. J. Mater.2014, 2014, Article ID 802467. https://doi.org/10.1155/2014/802467
https://doi.org/10.1155/2014/802467
[21] Rajesh, R.; Hariharasubramanian, A.; Ravichandran, Y.D. Chicken Bone as a Bioresource for the Bioceramic [Hydroxyapatite]. Phosphorus, Sulfur Silicon Relat. Elem.2012, 187(8), 914-925. https://doi.org/10.1080/10426507.2011.650806
https://doi.org/10.1080/10426507.2011.650806
[22] Malla, K.P.; Regmi, S.; Nepal, A.; Bhattarai, S.; Yadav, R. J.; Sakurai, S.; Adhikari, R. Extraction and Characterization of Novel Natural Hydroxyapatite Bioceramic by Thermal Decomposition of Waste Ostrich Bone. Int. J. Biomater.2020, 2020,Article ID 1690178. https://doi.org/10.1155/2020/1690178
https://doi.org/10.1155/2020/1690178
[23] Fara, A.N.K.A.; Abdullah, H.Z. Characterization of Derived Natural Hydroxyapatite [HAp] Obtained from Different Types of Tilapia Fish Bones and Scales. AIP Conf. Proc.2015, 1669, 020071-0200776. https://doi.org/10.1063/1.4919215
https://doi.org/10.1063/1.4919215
[24] Venkatesan, J.; Lowe, B.; Manivasagan, P.; Kang, K.H.; Chalisserry, E.P.; Anil, S.; Kim, D.G.; Kim, S.K. Isolation and Characterization of Nano-Hydroxyapatite from Salmon Fish Bone. Materials2015, 8(8), 5426-5439. https://doi.org/10.3390/ma8085253
https://doi.org/10.3390/ma8085253
[25] Pandey, G.; Dhakal, K.N.; Singh, A.K.; Dhungel, S.K.; Adhikari, R. Facile Methods of Preparing Pure Hydroxyapatite Nanoparticles in Ordinary Laboratories. Bibechana2021, 18(1), 83-90. https://doi.org/10.3126/bibechana.v18i1.29600
https://doi.org/10.3126/bibechana.v18i1.29600
[26] Laonapakul, T. Synthesis of Hydroxyapatite from Biogenic Wastes. KKU Eng. J.2015, 42(3), 269-275. https://doi.org/10.14456/kkuenj.2015.30
[27] Odusote, J.K.; Danyuo, Y.; Baruwa, A.D.; Azeez, A.A. Synthesis and Characterization of Hydroxyapatite from Bovine Bone for Production of Dental Implants. J. Appl. Biomater. Funct. Mater.2019, 17, 1-7 https://doi.org/10.1177/2280800019836829
https://doi.org/10.1177/2280800019836829
[28] Mohd Pu'ad, N.A.S.; Koshy, P.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C. Syntheses of Hydroxyapatite from Natural Sources. Heliyon2019, 5, 1-14. https://doi.org/10.1016/j.heliyon.2019.e01588
https://doi.org/10.1016/j.heliyon.2019.e01588
[29] Ramesh, S.; Loo, Z.Z.; Tan, C.Y.; Chew, W.J.K.; Ching, Y.C.; Tarlochan, F.; Chandran, H.; Krishnasamy, S.; Bang, L.T.; Sarhan, A.A.D. Characterization of Biogenic Hydroxyapatite Derived from Animal Bones for Biomedical Applications. Ceram. Int.2018, 44(9), 10525-10530. https://doi.org/10.1016/j.ceramint.2018.03.072
https://doi.org/10.1016/j.ceramint.2018.03.072
[30] Uskoković, V.; Iyer, M.A.; Wu, V.M. One Ion to Rule Them All: The Combined Antibacterial, Osteoinductive and Anticancer Properties of Selenite-Incorporated Hydroxyapatite. J. Mater. Chem. B.2017, 5(7), 1430-1445. https://doi.org/10.1039/c6tb03387c
https://doi.org/10.1039/C6TB03387C
[31] Zhang, X.; Chaimayo, W.; Yang, C.; Yao, J.; Miller, B.L.; Yates, M.Z. Silver-Hydroxyapatite Composite Coatings with Enhanced Antimicrobial Activities through Heat Treatment. Surf. Coatings Technol.2017, 325, 39-45. https://doi.org/10.1016/j.surfcoat.2017.06.013.
https://doi.org/10.1016/j.surfcoat.2017.06.013
[32] Ajduković, Z R.; Mihajilov-Krstev, T.M.; Ignjatović, N.L.; Stojanović, Z.; Mladenović-Antić, S.B.; Kocić, B.D.; Najman, S.; Petrović, N.D.; Uskoković, D.P. In Vitro Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties. J. Nanosci. Nanotechnol.2016, 16, 1420-1428. https://doi.org/10.1166/jnn.2016.10699
https://doi.org/10.1166/jnn.2016.10699
[33] Padmanabhan, V.P.; Kulandaivelu, R.; Nellaiappan, S.N.T.S.; Lakshmipathy, M.; Sagadevan, S.; Johan, M.R. Facile Fabrication of Phase Transformed Cerium[IV] Doped Hydroxyapatite for Biomedical Applications - A Health Care Approach. Ceram. Int.2020, 46, 2510-2522. https://doi.org/10.1016/j.ceramint.2019.09.245
https://doi.org/10.1016/j.ceramint.2019.09.245
[34] Jenifer, A.; Sakthivel, P.; Senthilarasan, K.; Sivaprakash, P.; Arumugam, S. In Vitro Analysis of Nickel Doped Hydroxyapatite for Biomedical Applications. Int. J. Sci. Technol. Res.2019, 8(11), 781-787.
[35] Resmim, C.M.; Dalpasquale, M.; Vielmo, N.I.C.; Mariani, F.Q.; Villalba, J.C.; Anaissi, F.J.; Caetano, M.M.; Tusi, M.M. Study of Physico-Chemical Properties and in Vitro Antimicrobial Activity of Hydroxyapatites Obtained from Bone Calcination. Prog. Biomater.2019, 8, 1-9. https://doi.org/10.1007/s40204-018-0105-2
https://doi.org/10.1007/s40204-018-0105-2
[36] Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomedicine2017, 12, 1227-1249. https://doi.org/10.2147/IJN.S121956
https://doi.org/10.2147/IJN.S121956
[37]Shrestha, P.; Cooper, B.S.; Coast, J.; Oppong, R.; Do Thi Thuy, N.; Phodha, T.; Celhay, O.; Guerin, P.J.; Wertheim, H.; Lubell, Y. Enumerating the Economic Cost of Antimicrobial Resistance per Antibiotic Consumed to Inform the Evaluation of Interventions Affecting Their Use. Antimicrob. Resist. Infect. Control2018, 7, Article number 98. https://doi.org/10.1186/s13756-018-0384-3
https://doi.org/10.1186/s13756-018-0384-3
[38] Ciobanu, C.S.; Iconaru, S.L.; Chifiriuc, M.C.; Costescu, A.; Le Coustumer, P.; Predoi, D. Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles. Biomed Res. Int.2013, 2013, Article ID 916218. https://doi.org/10.1155/2013/916218
https://doi.org/10.1155/2013/916218
[39] Swetha, M.; Sahithi, K.; Moorthi, A.; Saranya, N.; Saravanan, S.; Ramasamy, K.; Srinivasan, N.; Selvamurugan, N. Synthesis, Characterization, and Antimicrobial Activity of Nano-Hydroxyapatite-Zinc for Bone Tissue Engineering Applications. J. Nanosci. Nanotechnol.2012, 12, 167-172. https://doi.org/10.1166/jnn.2012.5142
https://doi.org/10.1166/jnn.2012.5142
[40] Venkatesan, J.; Kim, S.K. Effect of Temperature on Isolation and Characterization of Hydroxyapatite from Tuna [Thunnus Obesus] Bone. Materials 2010, 3, 4761-4772. https://doi.org/10.3390/ma3104761
https://doi.org/10.3390/ma3104761
[41] Magaldi, S.; Mata-Essayag, S.; Hartung De Capriles, C.; Perez, C.; Colella, M. T.; Olaizola, C.; Ontiveros, Y. Well Diffusion for Antifungal Susceptibility Testing. Int. J. Infect. Dis.2004, 8, 39-45. https://doi.org/10.1016/j.ijid.2003.03.002
https://doi.org/10.1016/j.ijid.2003.03.002
[42] Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal.2016, 6(2), 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
https://doi.org/10.1016/j.jpha.2015.11.005
[43] Poralan, G.M.; Gambe, J.E.; Alcantara, E.M.; Vequizo, R.M. X-Ray Diffraction and Infrared Spectroscopy Analyses on the Crystallinity of Engineered Biological Hydroxyapatite for Medical Application. IOP Conf. Ser. Mater. Sci. Eng.2015, 79, 1-7. https://doi.org/10.1088/1757-899X/79/1/012028
https://doi.org/10.1088/1757-899X/79/1/012028
[44] Sobczak-Kupiec, A.; Wzorek, Z. The Influence of Calcination Parameters on Free Calcium Oxide Content in Natural Hydroxyapatite. Ceram. Int.2012, 38, 641-647. https://doi.org/10.1016/j.ceramint.2011.06.065
https://doi.org/10.1016/j.ceramint.2011.06.065
[45] Fleet, M.E. Infrared Spectra of Carbonate Apatites: Evidence for a Connection between Bone Mineral and Body Fluids. Am. Mineral.2017, 102, 149-157. https://doi.org/10.2138/am-2017-5704
https://doi.org/10.2138/am-2017-5704
[46] Khoo, W.; Nor, F.M.; Ardhyananta, H.; Kurniawan, D. Preparation of Natural Hydroxyapatite from Bovine Femur Bones Using Calcination at Various Temperatures. Procedia Manuf.2015, 2, 196-201. https://doi.org/10.1016/j.promfg.2015.07.034
https://doi.org/10.1016/j.promfg.2015.07.034
[47] Bahrololoom, M.E.; Javidi, M.; Javadpour, S.; Ma, J. Characterisation of Natural Hydroxyapatite Extracted from Bovine Cortical Bone Ash. J. Ceram. Process. Res.2009, 10(2), 129-138. https://doi.org/10.36410/jcpr.2009.10.2.129
[48] Ofudje, E.A.; Rajendran, A.; Adeogun, A.I.; Idowu, M.A.; Kareem, S.O.; Pattanayak, D.K. Synthesis of Organic Derived Hydroxyapatite Scaffold from Pig Bone Waste for Tissue Engineering Applications. Adv. Powder Technol.2018, 29, 1-8. https://doi.org/10.1016/j.apt.2017.09.008
https://doi.org/10.1016/j.apt.2017.09.008
[49] Liu, P.; Li, Z.; Yuan, L.; Sun, X.; Zhou, Y. Pourbaix-Guided Mineralization and Site-Selective Photoluminescence Properties of Rare Earth Substituted B-Type Carbonated Hydroxyapatite Nanocrystals. Molecules2021, 26 (3), 540. https://doi.org/10.3390/molecules26030540
https://doi.org/10.3390/molecules26030540
[50] Sofronia, A.M.; Baies, R.; Anghel, E.M.; Marinescu, C.A.; Tanasescu, S. Thermal and Structural Characterization of Synthetic and Natural Nanocrystalline Hydroxyapatite. Mater. Sci. Eng. C.2014, 43, 153-163. https://doi.org/10.1016/j.msec.2014.07.023
https://doi.org/10.1016/j.msec.2014.07.023
[51] Markovic, M. Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material Volume. J. Res. Natl. Inst. Stand. Technol. 2004, 109,253-568. https://doi.org/10.1097/00000658-199102000-00001
https://doi.org/10.1097/00000658-199102000-00001
[52] Walters, M.A.; Leung, Y.C.; Blumenthal, N.C.; Konsker, K.A.; LeGeros, R.Z.A Raman and Infrared Spectroscopic Investigation of Biological Hydroxyapatite. J. Inorg. Biochem.1990, 39(3), 193-200. https://doi.org/10.1016/0162-0134[90]84002-7
https://doi.org/10.1016/0162-0134(90)84002-7
[53] Jaber, H.L.; Hammood, A.S.; Parvin, N. Synthesis and Characterization of Hydroxyapatite Powder from Natural Camelus Bone. J. Aust. Ceram. Soc.2018, 54, 1-10. https://doi.org/10.1007/s41779-017-0120-0
https://doi.org/10.1007/s41779-017-0120-0
[54] Esmaeilkhanian, A.; Sharifianjazi, F.; Abouchenari, A.; Rouhani, A.; Parvin, N.; Irani, M. Synthesis and Characterization of Natural Nano-Hydroxyapatite Derived from Turkey Femur-Bone Waste. Appl. Biochem. Biotechnol.2019, 189, 919-932. https://doi.org/10.1007/s12010-019-03046-6
https://doi.org/10.1007/s12010-019-03046-6
[55] Hariani, P.L.; Muryati, M.; Said, M.; Salni, S. Synthesis of Nano-Hydroxyapatite from Snakehead [Channa Striata] Fish Bone and Its Antibacterial Properties. Key Eng. Mater.2020, 840, 293-299. https://doi.org/10.4028/www.scientific.net/kem.840.293
https://doi.org/10.4028/www.scientific.net/KEM.840.293
[56] Bano, N.; Jikan, S.S.; Basri, H.; Adzila, S.; Zago, D.M. XRD and FTIR Study of A&B Type Carbonated Hydroxyapatite Extracted from Bovine Bone. AIP Conf. Proc.2019, 2068, 0201001-0201006. https://doi.org/10.1063/1.5089399
https://doi.org/10.1063/1.5089399
[57] Shavandi, A.; Bekhit, A.E.D.A.; Ali, A.; Sun, Z. Synthesis of Nano-Hydroxyapatite [NHA] from Waste Mussel Shells Using a Rapid Microwave Method. Mater. Chem. Phys.2015, 149, 607-616. https://doi.org/10.1016/j.matchemphys.2014.11.016
https://doi.org/10.1016/j.matchemphys.2014.11.016
[58] Gayathri, B.; Muthukumarasamy, N.; Velauthapillai, D.; Santhosh, S.B. Magnesium Incorporated Hydroxyapatite Nanoparticles : Preparation, Characterization, Antibacterial and Larvicidal Activity. Arab. J. Chem.2018, 11, 645-654. https://doi.org/10.1016/j.arabjc.2016.05.010
https://doi.org/10.1016/j.arabjc.2016.05.010
[59] Ruksudjarit, A.; Pengpat, K.; Rujijanagul, G.; Tunkasiri, T. Synthesis and Characterization of Nanocrystalline Hydroxyapatite from Natural Bovine Bone. Curr. Appl. Phys.2008, 8(2-3), 270-272. https://doi.org/10.1016/j.cap.2007.10.076
https://doi.org/10.1016/j.cap.2007.10.076
[60] Akhavan, A.; Sheikh, N.; Khoylou, F.; Naimian, F.; Ataeivarjovi, E. Synthesis of Antimicrobial Silver/Hydroxyapatite Nanocomposite by Gamma Irradiation. Radiat. Phys. Chem.2014, 98, 46-50. https://doi.org/10.1016/j.radphyschem.2014.01.004
https://doi.org/10.1016/j.radphyschem.2014.01.004
[61] Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus. J. Biomed. Mater. Res.2000, 52, 662-668. https://doi.org/10.1002/1097-4636[20001215]52:4<662::AID-JBM10>3.0.CO;2-3
https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
[62] Varkey, A.J. Antibacterial Properties of Some Metals and Alloys in Combating Coliforms in Contaminated Water. Sci. Res. Essays.2010, 5 (24), 3834-3839.