Impact of As-Prepared and Purifıed Multi-Walled Carbon Nanotubeson the Liquid-Phase Aerobic Oxidatıon of Hydrocarbons

Eldar Zeynalov1, Asgar Huseynov1, Elchin Huseynov1, Nazilya Salmanova2, Yaqub Nagiyev1, Narmin Abdurakhmanova1 (pp 479-485)
Affiliation: 
1 Institute of Catalysis & Inorganic Chemistry, Azerbaijan National Academy of Sciences, 113, H. Javid Ave., Baku, Azerbaijan 2 Azerbaijan State University of Oil and Industry, Ministry of Education, 20, Azadlig Ave., AZ 1010 Baku, Azerbaijan zeynalov_2000@yahoo.com
DOI: 
https://doi.org/10.23939/chcht15.04.479
AttachmentSize
PDF icon full_text.pdf78.5 KB
Abstract: 
The article presents simple kinetic approaches to study the effect of multi-walled carbon nanotubes (MWCNTs) additives on the aerobic oxidation of hydrocarbons and to propose real acceptable mechanisms of the process. The aerobic liquid phase low-temperature oxidation of ethylbenzene conducted in the presence of multi-walled carbon nanotubes has been used as a model pattern. Kinetic analysis established the catalytic action associated with the presence of the iron compounds in inner channels of MWCNTs. These compounds are identified as ferric carbides provoking decomposition of the ethylbenzene hydroperoxide and thereby suppressing the competitive route of alky-peroxide radicals addition to the nanocarbon cage. Thus the reaction finally proceeds in the autocatalytic mode.Contradictory conclusions on the effect of CNTs on the oxidation chain processes existing in the literature are associated with the lack of control over nature and content of metal impurities in channels of nanotubes.
References: 

[1] Miners S., Rance G., Khlobystov A.: Chem. Soc. Rev., 2016, 45, 4727. https://doi.org/10.1039/C6CS00090H
https://doi.org/10.1039/C6CS00090H

[2] La Torre A., Rance G., El Harfi J. et al.: Nanoscale, 2010, 2, 1006. https://doi.org/10.1039/c0nr00035c
https://doi.org/10.1039/c0nr00035c

[3] Rance G., Solomonsz W., Khlobystov A.: Chem. Commun., 2013, 49, 1067. https://doi.org/10.1039/c2cc38035h
https://doi.org/10.1039/c2cc38035h

[4] Rance G., Marsh D., Bourne S. et al.: ACS Nano, 2010, 4, 4920. https://doi.org/10.1021/nn101287u
https://doi.org/10.1021/nn101287u

[5] Cornelio B., Rance G., Laronze-Cochard M. et al.: J. Mater. Chem. A, 2013, 1, 8737. https://doi.org/10.1039/c3ta11530e
https://doi.org/10.1039/c3ta11530e

[6] Cornelio B., Saunders A., Solomonsz W. et al.: J. Mater. Chem. A, 2015, 3, 3918. https://doi.org/10.1039/C4TA06953F
https://doi.org/10.1039/C4TA06953F

[7] Cherepnova Yu., Zeynalov E., Ishenko N., Abdullayev M.: Neftegazovye Tekhnologii, 2013, 6, 66.

[8] Zeynalov E., Ishenko N., Magerramova M. et al.: Neftegazovye Tekhnologii, 2016, 2, 73.

[9] Zeynalov E., Aliyeva A., Nuriyev L. et al.: Neftegazovye Tekhnologii, 2011, 6, 69.

[10] Zeynalov E., Friedrich J.., Wagner M., Hidde G.: Chem. Chem. Technol., 2015, 9, 51. https://doi.org/10.23939/chcht09.01.051
https://doi.org/10.23939/chcht09.01.051

[11] Kobotaeva N., Skorokhodova T., Ryabova N.: Russ. J. Phys. Chem. A, 2015, 89, 462. https://doi.org/10.1134/S0036024415030164
https://doi.org/10.1134/S0036024415030164

[12] Yang S., Li X., Zhu W. et al.: Carbon, 2008, 46, 445. https://doi.org/10.1016/j.carbon.2007.12.006
https://doi.org/10.1016/j.carbon.2007.12.006

[13] Yang S., Zhu W., Li X. et al.: Catal. Commun., 2007, 8, 2059. https://doi.org/10.1016/j.catcom.2007.04.015
https://doi.org/10.1016/j.catcom.2007.04.015

[14] Yang S., Sun Y., Yang H., Wan J.: Front. Environ. Sci. Eng., 2015, 9, 436. https://doi.org/10.1007/s11783-014-0681-x
https://doi.org/10.1007/s11783-014-0681-x

[15] Luo J., Yu H., Wang H., Peng F.: Catal. Commun., 2014, 51, 77. https://doi.org/10.1016/j.catcom.2014.03.031
https://doi.org/10.1016/j.catcom.2014.03.031

[16] BuonocoreF., Trani F., Ninno D. et al.: Nanotechnology, 2007, 19, 025711. https://doi.org/10.1088/0957-4484/19/02/025711
https://doi.org/10.1088/0957-4484/19/02/025711

[17] Fenoglio I., Tomatis M., Lison D. et al.: Free Radical Bio. Med., 2006, 40, 1227. https://doi.org/10.1016/j.freeradbiomed.2005.11.010
https://doi.org/10.1016/j.freeradbiomed.2005.11.010

[18] Galano A.: Nanoscale, 2010, 2, 373. https://doi.org/10.1039/b9nr00364a
https://doi.org/10.1039/b9nr00364a

[19] Martínez A., Galano A.: J. Phys. Chem. C, 2010, 114, 8184. https://doi.org/10.1021/jp100168q
https://doi.org/10.1021/jp100168q

[20] Watts P., Fearon P., Hsu W. et al.: J. Mater. Chem., 2003, 13, 491. https://doi.org/10.1039/B211328G
https://doi.org/10.1039/b211328g

[21] Martínez-Morlanes M., Castell P., Alonso P. et al.: Carbon, 2012, 50, 2442. https://doi.org/10.1016/j.carbon.2012.01.066
https://doi.org/10.1016/j.carbon.2012.01.066

[22] Shi X., Jiang B., Wang J., Yang Y.: Carbon, 2012, 50, 1005. https://doi.org/10.1016/j.carbon.2011.10.003
https://doi.org/10.1016/j.carbon.2011.10.003

[23] Zeynalov E., Friedrich J.: Mater. Test., 2007, 49, 265. https://doi.org/10.3139/120.100812
https://doi.org/10.3139/120.100812

[24] Zeynalov E., Wagner M., Friedrich J. et al.: Chem. Chem. Technology, 2016, 10, 581. https://doi.org/10.23939/chcht10.04si.581
https://doi.org/10.23939/chcht10.04si.581

[25] Guadagno L., Naddeo C., Raimondo M. et al: Polym. Degrad. Stabil., 2010, 95, 1614. https://doi.org/10.1016/j.polymdegradstab.2010.05.030
https://doi.org/10.1016/j.polymdegradstab.2010.05.030

[26] Zeynalov E., Nagiyev T., Friedrich J., Magerramova M.: Chapter 16 [in:] Grumezescu A. (Ed.), Fullerenes, Graphenes and Nanotubes: A Pharmaceutical Approach. Elsevier 2018, 631-681. https://doi.org/10.1016/B978-0-12-813691-1.00016-6
https://doi.org/10.1016/B978-0-12-813691-1.00016-6

[27] Bocchini S., FracheA., Camino G., Claes M.: Eur. Polym. J., 2007, 43, 3222. https://doi.org/10.1016/j.eurpolymj.2007.05.012
https://doi.org/10.1016/j.eurpolymj.2007.05.012

[28] Sreekanth P., Kumar N., Kanagaraj S.:Compos. Sci. Technol., 2012, 72, 390. https://doi.org/10.1016/j.compscitech.2011.11.031
https://doi.org/10.1016/j.compscitech.2011.11.031

[29] Morlat-Therias S., Fanton E., Gardette J. et al.: Polym. Degrad. Stabil., 2007, 92, 1873. https://doi.org/10.1016/j.polymdegradstab.2007.06.021
https://doi.org/10.1016/j.polymdegradstab.2007.06.021

[30] Shen Z., Bateman S., Wu D. et al.: Compos. Sci. Technol., 2009, 69, 239. https://doi.org/10.1016/j.compscitech.2008.10.017
https://doi.org/10.1016/j.compscitech.2008.10.017

[31] Liao S., Peng F., Yu H., Wang H.: Appl. Catal. A-Gen., 2014, 478, 1. https://doi.org/10.1016/j.apcata.2014.03.024
https://doi.org/10.1016/j.apcata.2014.03.024

[32] Luo J., Peng F., Yu H. et al.: Chem. Cat. Chem, 2013, 5, 1578. https://doi.org/10.1002/cctc.201200603
https://doi.org/10.1002/cctc.201200603

[33] Yu H., Peng F., Tan J. et al.: Angew. Chem., 2011, 123, 4064. https://doi.org/10.1002/ange.201007932
https://doi.org/10.1002/ange.201007932

[34] Yang X., Wang H., Li J. et al.: Chem. Eur. J., 2013, 19, 9818. https://doi.org/10.1002/chem.201300676
https://doi.org/10.1002/chem.201300676

[35] Cao Y., Li Y., Yu H. et al.: Catal. Sci. Technol., 2015, 5, 3935. https://doi.org/10.1039/C5CY00136F
https://doi.org/10.1039/C5CY00136F

[36] Zhai Y., Zhu Z., Dong S.: Chem. Cat. Chem., 2015, 7, 2806. https://doi.org/10.1002/cctc.201500323
https://doi.org/10.1002/cctc.201500323

[37] Sun X., Wang R., Su D.: Chin. J. Catal., 2013, 34, 508. https://doi.org/10.1016/S1872-2067(11)60515-9
https://doi.org/10.1016/S1872-2067(11)60515-9

[38] Zeynalov E., Allen N., Salmanova N., Vishnyakov V.: J. Phys. Chem. Solid., 2019, 127, 245. https://doi.org/10.1016/j.jpcs.2018.12.031
https://doi.org/10.1016/j.jpcs.2018.12.031

[39] Emanuel N., Gladyshev G., Tsepalov V., Piotrovskiy K.: Testirovanie Khimicheskikh Soedineniy kak Stabilizatorov Polymernykh Materialov (preprint). Chernogolovka 1973.

[40] Gladyshev G., Tsepalov V.: Russ. Chem. Rev., 1975, 44, 1830. https://doi.org/10.1070/RC1975v044n10ABEH002381
https://doi.org/10.1070/RC1975v044n10ABEH002381

[41] Zeynalov E., Vasnetsova O.: Kineticheskiy Skrining Ingibitorov Radikalnykh Reaksiy. Elm, Baku 1993.

[42] Zeynalov E., Allen N.: Polym. Degrad. Stabil., 2004, 85, 847. https://doi.org/10.1016/j.polymdegradstab.2004.03.021
https://doi.org/10.1016/j.polymdegradstab.2004.03.021

[43] Abdullayeva S., Musayeva N., Frigeri C. et al.: J. Adv. Phys., 2015, 11, 3229. https://doi.org/10.24297/jap.v11i3.6943
https://doi.org/10.24297/jap.v11i3.6943

[44] Emanuel N., Maizus Z., Skibida I.: Angew. Chem. Int. Edit., 1969, 8, 97. https://doi.org/10.1002/anie.196900971
https://doi.org/10.1002/anie.196900971

[45] Potekhin V.: Osnovy Teorii Khimicheskikh Protsessov Tekhnologii Organicheskikh Veschestv i Neftepererabotki. Khimizdat, St.Petersburg 2014.

[46] Zeynalov E., Friedrich J.: Polym. Polym. Compos., 2006, 14, 779. https://doi.org/10.1177/096739110601400803
https://doi.org/10.1177/096739110601400803

[47] Salmanova N., Magerramova M., Agahuseynova M., Zeynalov E.: Int. Res. J. Emerg. Trends Multidisc., 2015, 1, 220.

[48] Bulgakov R., Ponomareva Y., Maslennikov S. et al.: Russ. Chem. Bull., 2005, 54, 1862. https://doi.org/10.1007/s11172-006-0049-x
https://doi.org/10.1007/s11172-006-0049-x

[49] Galimov D., Bulgakov R., Gazeeva D.: Russ. Chem. Bull., 2011, 60, 2107. https://doi.org/10.1007/s11172-011-0323-4
https://doi.org/10.1007/s11172-011-0323-4

[50] Sabirov D., Garipova R., Bulgakov R.: Fuller. Nanotub. Car. N., 2015, 23, 1051. https://doi.org/10.1080/1536383X.2015.1060963
https://doi.org/10.1080/1536383X.2015.1060963

[51] Yumagulova R., Medvedeva N., Yakupova L. et al.: Kinet. Catal., 2013, 54, 709. https://doi.org/10.1134/S0023158413050182
https://doi.org/10.1134/S0023158413050182

[52] Zeynalov E.: Chapter 9 [in:] Mukbaniani O., Abadi M., Tatrishvili T. (Eds.), High-Performance Polymers for Engineering-Based Composites. Apple Academic Press Inc. 2016, 103-110.

[53] Zeynalov E., Allen N., Salmanova N.: Polym. Degrad. Stabil., 2009, 94, 1183. https://doi.org/10.1016/j.polymdegradstab.2009.04.027
https://doi.org/10.1016/j.polymdegradstab.2009.04.027

[54] Fiori G., Betti A., Bruzzone S., Iannaccone G.: ACS Nano, 2012, 6, 2642. https://doi.org/10.1021/nn300019b
https://doi.org/10.1021/nn300019b

[55] Palla P., Uppu G., Ethiraj A., Raina J.. Bull. Mater. Sci., 2016, 39, 1441. https://doi.org/10.1007/s12034-016-1285-9
https://doi.org/10.1007/s12034-016-1285-9

[56] Aliyeva A., Nuriyev L., Zeynalov E.: Azerbaydzhanskoe Neftyanoe Khozyaystvo, 2009, 10, 47.

[57] Abbasov V., Aliyeva L., Alma H. et al.: IX International Scientific Conference "Fullerenes and Nanostructures in Condensed Matter", Belarus, Minsk 2016, 330.

[58] Afandiyeva L., Abbasov V., Aliyeva L. et al.: Processes of Petrochemistry and Oil-Refining 2016, 17, 302.

[59] Aliyeva L., Afandiyeva L., Abbasov V. et al.: Processes of Petrochemistry and Oil-Refining, 2017, 18, 202.

[60] Afandiyeva L., Abbasov V., Aliyeva L. et al.: 3rd Turkic World Conference on Chemical Sciences and Technologies, Azerbaijan, Baku 2017, 207.

[61] Emanuel N., Roginsky V., Buchachenko A.: Russ. Chem. Rev., 1982, 51, 203. https://doi.org/10.1070/RC1982v051n03ABEH002826
https://doi.org/10.1070/RC1982v051n03ABEH002826

[62] Emanuel N., Buchachenko A.: Khimicheskaya Fizika Molekulyarnogo Razrusheniya i Stabilizatsii Polimerov. Nauka, Moskva 1988.

[63] Shlyapnikov Yu.: Russ. Chem. Rev., 1981, 50, 581. https://doi.org/10.1070/RC1981v050n06ABEH002652
https://doi.org/10.1070/RC1981v050n06ABEH002652

[64] Zeynalov E.: Anticatalysts of Thermooxidative Degradation of Polymeric Materials. Elm, Baku 2014.

[65] Emanuel N., Denisov E., Mayzus Z.: Tsepniye reaktsii okisleniya uglevodorodov v zhidkoy faze. Nauka, Moskva 1965.

[66] Maillard B., Ingold K., Scaiano J.: J. Am. Chem. Soc., 1983, 105, 5095. https://doi.org/10.1021/ja00353a039
https://doi.org/10.1021/ja00353a039

[67] Scott G.: Atmospheric Oxidation and Antioxidants. Elsevier, London 1993.