Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Composition and Activity of Copper-Palladium Catalyst on Carbon Fiber Material for Air Purification from Carbon Monoxide

Tatyana Kiose1,2, Tatyana Rakitskaya1,2, Alim Ennan2, Volodymyr Vasylechko3, Halyna Gryshchouk3
Affiliation: 
1 Faculty of Chemistry and Pharmacy, Odesa I.I. Mechnikov National University, 2 Dvoryanska St., Odesa 65082, Ukraine 2 Physico-Chemical Institute of Environment and Human Protection, 3 Preobrazhenska St., Odesa 65082, Ukraine 3 Ivan Franko National University of Lviv, Department of Analytical Chemistry, 6 Kyryla and Mefodiya St., Lviv 79005, Ukraine kiosetatyana@gmail.com
DOI: 
https://doi.org/10.23939/chcht17.02.272
AttachmentSize
PDF icon full_text.pdf386.35 KB
Abstract: 
A set of research methods (X-ray phase, desorption, kinetic) was used to determine the state of the basic components K2PdCl4 and Cu(NO3)2 in the catalyst for the oxidation of carbon monoxide by oxygen. It was found that the palladium (II) and copper (II) initial compounds under the action of carbon fiber carrier change their state. Palladium is reduced to X-ray amorphous Pd0, and copper (II) is in the form of a crystalline phase Cu2(OH)3Cl. It was found that the catalyst exhibits protective properties within the initial concentrations of carbon monoxide  300 mg/m3 and an effective contact time of 0.45 s and can be used in human respiratory protection.
References: 

[1] Rakitskaya, T.L.; Ennan, A.A.; Volkova, V.Ya. Nizkotempera-turnaya kataliticheskaya ochistka vozdukha ot ugarnogo gaza; Ekologiya, 2005.

[2] Rakitskaya, T.L.; Kiose, T. A.; Ennan, A.A. Kontseptualnyye osnovy razrabotki nizkotemperaturnykh katalizatorov okisleniya oksida ugleroda kislorodom vozdukha. Odesa National University Herald. Chemistry 2020, 25, 6-23. https://doi.org/10.18524/2304-0947.2020.4(76).216920
https://doi.org/10.18524/2304-0947.2020.4(76).216920

[3] Rakitskaya, T.L.; Kiose, T.A.; Ennan, A.A.; Volkova, V.Ya.; Jiga, A.M.; Golubchik, K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia І. metallicheskie katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-15. https://doi.org/10.18524/2304-0947.2013.2(46).56996
https://doi.org/10.18524/2304-0947.2013.2(46).56996

[4] Rakitskaya, T.L.; Kiose, T. A.; Ennan, A.A.; Volkova, V.Ya. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizato-rov okisleniia monooksida ugleroda respiratornogo naznacheniia ІІ. Oksidnye i oksidno-metallicheskie katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-10. https://doi.org/10.18524/2304-0947.2013.3(47).57002
https://doi.org/10.18524/2304-0947.2013.3(47).57002

[5] Rakitskaya, T.L.; Kiose, T.A.; Ennan, A. A.; Jiga, A.M.; Vol-kova, V.Ya.; Golubchik, K.O. Sostoianie i perspektivy razrabotki nizkotemperaturnykh katalizatorov okisleniia monooksida ugleroda respiratornogo naznacheniia. ІІІ. Nanesennye metallokompleksnye katalizatory. Odesa National University Herald. Chemistry 2013, 18, 5-12. https://doi.org/10.18524/2304-0947.2013.4(48).37012
https://doi.org/10.18524/2304-0947.2013.4(48).37012

[6] Luna, B.; Somi, G.; Winchester, J.; Grose, J.; Mulloth, L.; Perry, J. Evaluation of Commercial Off-the-Shelf Sorbents & Catalysts for Control of Ammonia and Carbon Monoxide; 40th International Conference on Environmental Systems, Barcelona, Spain, 2010. https://doi.org/10.2514/6.2010-6062
https://doi.org/10.2514/6.2010-6062

[7] Croll, L.; Billingsley, B.; Brey, L.; Fansler, D.; Martinson, P. Design and Evaluation of Escape and CBRN Respirator Cartridges Using Nano Gold Carbon Monoxide Oxidation Catalysts; 10th International Symposium on Protection against Chemical and Bio-logical Warfare Agents; Stockholm, 2010.

[8] Punde, S.S.; Tatarchuk, B.J. CO Removal at Ambient Condi-tions: Catalyst Screening and Impact of Operating Conditions. Sep. Purif. Technol. 2017, 183, 43-53. https://doi.org/10.1016/j.seppur.2017.03.007
https://doi.org/10.1016/j.seppur.2017.03.007

[9] Rakitskaya, T.L.; Kiose, T.A.; Golubchik, K.O.; Ennan, A.A.; Volkova, V.Y. Acid-Modified Clinoptilolite as a Support for Palla-dium-Copper Complexes Catalyzing Carbon Monoxide Oxidation with Air Oxygen. Chem. Cent. J. 2017, 11, 28. https://doi.org/10.1186/s13065-017-0256-6
https://doi.org/10.1186/s13065-017-0256-6

[10] Rakitskaya, T.L.; Kiose, T.A.; Zryutina, A.М.; Gladyshevskii, R.E.; Truba, A.S.; Vasylechko, V.O.; Demchenko, P.Yu.; Gryschouk, G.V.; Volkova, V.Ya. Solid-State Catalysts Based on Bentonites and Pd(II) Cu(II) Complexes for Low-Temperature Carbon Monoxide Oxidation. Solid State Phenom. 2013, 200, 299-304. https://doi.org/10.4028/www.scientific.net/SSP.200.299
https://doi.org/10.4028/www.scientific.net/SSP.200.299

[11] Rakitskaya, T.L.; Dzhyga, G.M.; Kiose, T.A.; Oleksenko, L.P.; Volkova, V.Y. Pd(II), Cu(II), and Pillared Clay Based Nanocatalysts for Low-Temperature CO Oxidation. SN Appl. Sci. 2019, 1, 291. https://doi.org/10.1007/s42452-019-0314-x
https://doi.org/10.1007/s42452-019-0314-x

[12] Titov, D.N.; Ustyugov, A.V.; Tkachenko, O.P.; Kustov, L.M.; Zubavichus, Ya.V.; Veligzhanin, A.A.; Sadovskaya, N.V.; Oshanina, I.V.; Bruk, L.G.; Temkin, O.N. State of Active Components on the Surface of the PdCl2-CuCl2/γ-Al2O3 Catalyst for the Low-Temperature Oxidation of Carbon Monoxide. Kinet. Catal. 2012, 53, 262-274. https://doi.org/10.1134/S0023158412020140
https://doi.org/10.1134/S0023158412020140

[13] Du, X.; Li, H.; Yu, J.; Xiao, X.; Shi, Z.; Mao, D.; Lu, G. Realization of High Effective Pd-Cu-Clx/Al2O3 Catalyst for Low Temperature CO Oxidation by Pre-Synthesizing the Active Copper Phase of Cu2Cl(OH)3. Catal. Sci. Technol. 2015, 5, 3970-3979. https://doi.org/10.1039/c5cy00545k
https://doi.org/10.1039/C5CY00545K

[14] Shen, C.; Li, H.; Yu, J.; Wu, G.; Mao, D.; Lu, G.A First-Principles DFT Study on the Active Sites of Pd-Cu-Clx/Al2O3 Catalyst for Low-Temperature CO Oxidation. ChemCatChem. 2013, 5, 2813-2817. https://doi.org/10.1002/cctc.201300356
https://doi.org/10.1002/cctc.201300356

[15] Bruk, L.; Titov, D.; Ustyugov, A.; Zubavichus, Y.; Cherniko-va, V.; Tkachenko, O.; Kustov, L.; Murzin, V.; Oshanina, I.; Tem-kin, O. The Mechanism of Low-Temperature Oxidation of Carbon Monoxide by Oxygen over the PdCl2-CuCl2/γ-Al2O3 Nanocatalyst. Nanomaterials 2018, 8, 217. https://doi.org/10.3390/nano8040217
https://doi.org/10.3390/nano8040217

[16] Park, E.D.; Choi, S.H.; Lee, J.S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B. 2000, 104, 5586-5594. https://doi.org/10.1021/jp000583z
https://doi.org/10.1021/jp000583z

[17] Radkevich, V.Z.; Wilson, K.; Khaminets, S.G.; Sen'ko, T.L. Effect of Preparation Conditions on the Formation of the Active Phase of Carbon Fiber Catalytic Systems for the Low-Temperature Oxidation of Carbon Monoxide. Kinet. Catal. 2014, 55, 252-267. https://doi.org/10.1134/s0023158414020086
https://doi.org/10.1134/S0023158414020086

[18] Kiose, T.A.; Truba, A.S.; Rakitskaya, T.L.; Ennan, A.A.-A.; Rakitskiy, О.S. Effect of Certain Catalytic Poisons on the Activity of Cuprum-Paladium Complexes Applied on Carbon Material in The Reaction in the Reaction of Carbon Monoxide Oxidation by Air Oxygen. Odesa National University Herald. Chemistry 2022, 27, 5-19. https://doi.org/10.18524/2304-0947.2022.2(82).264875
https://doi.org/10.18524/2304-0947.2022.2(82).264875

[19] Wang, S.; Chen, Z.-H.; Ma, W.-J.; Ma, Q.-S. Influence of Heat Treatment on Physical-Chemical Properties of PAN-Based Carbon Fiber. Ceram. Int. 2006, 32, 291-295. https://doi.org/10.1016/j.ceramint.2005.02.014
https://doi.org/10.1016/j.ceramint.2005.02.014

[20] Shen, Y.; Guo, Y.; Wang, L.; Wang, Y.; Guo, Y.; Gong, X.; Lu, G. The Stability and Deactivation of Pd-Сu-Clx/A12O3 Catalyst for Low Temperature СО Охidation: An Effect of Moisture. Catal. Sci. Technol. 2011, 1, 1202-1207. https://doi.org/10.1039/C1CY00146A
https://doi.org/10.1039/c1cy00146a

[21] Park, E.D.; Choi, S.H.; Lee, J.S. Active States of Pd and Cu in Carbon-Supported Wacker-Type Catalysts for Low-Temperature CO Oxidation. J. Phys. Chem. B 2000, 104, 5586-5594. https://doi.org/10.1021/jp000583z
https://doi.org/10.1021/jp000583z

[22] Rakitskaya, T.L.; Truba, A.S.; Raskola, L.A.; Ennan A.A. Modyfikonanyi khlorydom manhanu(II) pryrodnyi klynoptylolit v reaktsii rozkladannya ozonu. Him. Fiz. Tehnol. Poverhni 2013, 4, 297-304.

[23] Rakitskaya, T.L.; Vasylechko, V.O.; Kiose, T.A.; Gryschouk, G.V.; Dzhiga, A.M.; Volkova, V.Y. Catalytic Activity of Pd(II) and Cu(II) Complexes Anchored with Natural and Pre-Modified Bentonite on the Oxidation of Carbon Monoxide. Chemistry of metals and alloys 2015, 8, 32-38. http://nbuv.gov.ua/UJRN/Khms_2015_8_1-2_10
https://doi.org/10.30970/cma8.0301