Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Association of 5,5′-Dibromo-o-Cresolsulfonphthalein Anions with Dye Cations in Aqueous Solution

Serghiy Shapovalov
Affiliation: 
V. N. Karazin Kharkiv National University, 4 Svobody sq., 61022 Kharkiv, Ukraine serghey.a.shapovalov@karazin.ua
DOI: 
https://doi.org/10.23939/chcht16.03.387
AttachmentSize
PDF icon full_text.pdf694.61 KB
Abstract: 
The formation of associates in aqueous solutions between single- or double-charged anions of 5,5′-dibromo-o-cresolsulfonphthaleine and single-charged cations of cyanine dyes (quinaldine blue, quinaldine red) has been considered. Based on the spectrophotometric data, the equilibrium constants of the association were analyzed. The energy of cation-anion interactions (standard enthalpy of formation of ions and associates) was determined by the semi-empirical AM1 method and probable structures of associates were set. The consistency between experimental spectrophotometric and calculated quantum chemical data is discussed.
References: 

[1] Bishop, E. Observations on the Theory of Action of Visual Indicators. Analyst 1971, 96, 537-549. https://doi.org/10.1039/AN9719600537
https://doi.org/10.1039/an9719600537

[2] Yamamoto, K.; Adachi, K. Interaction between Sulfonephthalein Dyes and Chitosan in Aqueous Solution and Its Application to the Determination of Surfactants. Anal. Sci. 2003, 19, 1133. https://doi.org/10.2116/analsci.19.1133
https://doi.org/10.2116/analsci.19.1133

[3] Shapovalov, S. Association Processes with the Participation of Dyes in Solutions: Thermodynamic and Equilibrium Characteristics of Nanosystems; LAP LAMBERT Academic Publishing: Riga, 2020.

[4] Balderas-Hernández, P.; Ramírez-Silva, M.T.; Romero-Romo, M.; Palomar-Pardavé, M.; Roa-Morales, G.; Barrera-Díaz, C.; Rojas-Hernández, A. Experimental Correlation between the pKa Value of Sulfonphthaleins with the Nature of the Substituents Groups. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 2008, 69, 1235-1245. https://doi.org/10.1016/j.saa.2007.06.038
https://doi.org/10.1016/j.saa.2007.06.038

[5] Ma, J.; Shu, H.; Yang, B.; Byrne, R.H.; Yuan, D. Spectrophotometric Determination of pH and Carbonate Ion Concentrations in Seawater: Choices, Constraints and Consequences. Anal. Chim. Acta 2019, 1081, 18-31. https://doi.org/10.1016/j.aca.2019.06.024
https://doi.org/10.1016/j.aca.2019.06.024

[6] Hudson-Heck, E.; Liu, X.; Byrne, R.H. Purification and Physical-Chemical Characterization of Bromocresol Purple for Carbon System Measurements in Freshwaters, Estuaries, and Oceans. ACS Omega 2021, 6, 17941-17951. https://doi.org/10.1021/acsomega.1c01579
https://doi.org/10.1021/acsomega.1c01579

[7] Takeshita, Y.; Warren, J.K.; Liu, X.; Spaulding, R.S.; Byrne, R.H.; Carter, B.R.; De Grandpre, M.D.; Murata, A.; Watanabe, S.-I. Consistency and Stability of Purified Meta-Cresol Purple for Spectrophotometric pH Measurements in Seawater. Mar. Chem. 2021, 236, 104018. https://doi.org/10.1016/j.marchem.2021.104018
https://doi.org/10.1016/j.marchem.2021.104018

[8] Bargrizan, S.; Smernik, R.J.; Mosley, L.M. Development of a Spectrophotometric Method for Determining pH of Soil Extracts and Comparison with Glass Electrode Measurements. Soil Sci. Soc. Am. J. 2017, 81, 1350-1358. https://doi.org/10.2136/sssaj2017.04.0119
https://doi.org/10.2136/sssaj2017.04.0119

[9] Bargrizan, S.; Smernik, R.J.; Fitzpatrick, R.W.; Mosley, L.M. The Application of a Spectrophotometric Method to Determine pH in Acidic (pH<5) Soils. Talanta 2018, 186, 421-426. https://doi.org/10.1016/j.talanta.2018.04.074
https://doi.org/10.1016/j.talanta.2018.04.074

[10] Bargrizan, S.; Smernik, R.J.; Mosley, L.M. Spectrophotometric Measurement of the pH of Soil Extracts Using a Multiple Indicator Dye Mixture. Eur. J. Soil Sci. 2019, 70, 411-420. https://doi.org/10.1111/ejss.12745
https://doi.org/10.1111/ejss.12745

[11] Jang, J.-S.; Kwon, S.-H. Micro pH Sensor Using Patterned Hydrogel with pH Indicator. J. Sensor Sci. Technol. 2011, 20, 234-237. https://doi.org/10.5369/JSST.2011.20.4.234
https://doi.org/10.5369/JSST.2011.20.4.234

[12] El Nahhal, I.M.; Zourab, S.M.; Kodeh, F.S.; Qudaih, A.I. Thin Film Optical BTB pH Sensors Using Sol-Gel Method in Presence of Surfactants. Int. Nano Lett. 2012, 2, 16. https://doi.org/10.1186/2228-5326-2-16
https://doi.org/10.1186/2228-5326-2-16

[12] Tashyrev, O.B.; Sioma, I.B.; Tashyreva, G.O., Hovorukha, V.M. Bromothymol Blue as the Universal Indicator for Determining the Stereometric Allocation of pH and Eh in the Medium in Heterophase Microorganisms Cultivation. Mikrobiolohichnyi Zhurnal 2019, 81, 14. https://doi.org/10.15407/microbiolj81.02.014 (in Ukrainian)
https://doi.org/10.15407/microbiolj81.02.014

[13] Pinto, V.C.; Araújo, C.F.; Sousa, P.J.; Gonçalves, L.M.; Minas, G. A Low-Cost Lab-on-a-Chip Device for Marine pH Quantification by Colorimetry. Sens. Actuators B Chem. 2019, 290, 285-292. https://doi.org/10.1016/j.snb.2019.03.098
https://doi.org/10.1016/j.snb.2019.03.098

[14] El-Nahhal, I.M.; Zourab, S.M.; Kodeh, F.S.; Abd el-Salam, F.H.; Baker, S.A. Sol-Gel Entrapment of Bromothymol Blue (BTB) Indicator in the Presence of Cationic 16E1Q and 16E1QS Surfactants. J. Sol-Gel Sci. Technol. 2016, 79, 628-636. https://doi.org/10.1007/s10971-016-4044-x
https://doi.org/10.1007/s10971-016-4044-x

[15] Kuswandi, B. Nanobiosensor Approaches for Pollutant Monitoring. Environ. Chem. Lett. 2019, 17, 975-990. https://doi.org/10.1007/s10311-018-00853-x
https://doi.org/10.1007/s10311-018-00853-x

[16] Mohamed, S.H.; Issa, Y.M.; Salim, A.I. Simultaneous Quantification of Simeprevir Sodium: A Hepatitis C Protease Inhibitor in Binary and Ternary Mixtures with Sofosbuvir and/or Ledipasvir Utilizing Direct and H-point Standard Addition Strategies. Spectrochim. Acta - A: Mol. Biomol. Spectrosc. 2019, 210, 290-297. https://doi.org/10.1016/j.saa.2018.07.017
https://doi.org/10.1016/j.saa.2018.07.017

[17] Nguyen, T.D.; Le, H.B.; Dong, T.O.; Pham, T.D. Determination of Fluoroquinolones in Pharmaceutical Formulations by Extractive Spectrophotometric Methods Using Ion-Pair Complex Formation with Bromothymol Blue. J Anal. Methods Chem. 2018, 2018, ID 8436948. https://doi.org/10.1155/2018/8436948
https://doi.org/10.1155/2018/8436948

[18] Issa, Y.M.; Abdel-Kader, N.S.; Zahran, A.E. Spectrophotometric Determination of Benzalkonium Chloride Using Sulfonphthaleins. Int. J. Pharm. Sci. Rev. Res. 2021, 68, 50-59. http://dx.doi.org/10.47583/ijpsrr.2021.v68i01.009
https://doi.org/10.47583/ijpsrr.2021.v68i01.009

[19] El-Ansary, A.L.; Abdel-Kader, N.S.; Asran, A.M. Spectrophotometric Studies on the Reaction of Diaveridine with Some Sulfonphthalein Dyes Based on Ion-Pair/Ion-Associate Complexes Formation. J. Spectrosc (Hindawi) 2018, 2018, ID 9269148. https://doi.org/10.1155/2018/9269148
https://doi.org/10.1155/2018/9269148

[20] Antakli, S.; Nejem, L.; Ahmad, W.A. Determination of Flucloxacillin Sodium by Analytical Spectrophotometry. Res. J. Pharm. Technol. 2019, 12, 4757-4762. https://doi.org/10.5958/0974-360X.2019.00820.5
https://doi.org/10.5958/0974-360X.2019.00820.5

[21] Gouda, A.A.; Hamdi, A.Y.; El Sheikh, R.; Abd Ellateif, A.E.; Badahdah, N.A.; Alzuhiri, M.E.; Saeed, E. Development and Validation of Spectrophotometric Methods for Estimation of Antimigraine Drug Eletriptan Hydrobromide in Pure Form and Pharmaceutical Formulations. Ann. Pharm. Franç. 2021, 79, 395-408. https://doi.org/10.1016/j.pharma.2020.11.002
https://doi.org/10.1016/j.pharma.2020.11.002

[22] Souri, E.; Amoon, E.; Ravari, N.S.; Keyghobadi, F.; Tehrani, M.B. Spectrophotometric Methods for Determination of Sunitinib in Pharmaceutical Dosage Forms Based on Ion-pair Complex Formation. Iran J. Pharm. Res. 2020, 19, 103-109. https://doi.org/10.22037/ijpr.2020.1101119

[23] Cardoso, S.G.; Ieggli, C.V.S.; Pomblum, S.C.G. Spectrophotometric Determination of Carvedilol in Pharmaceutical Formulations Through Charge-Transfer and Ion-Pair Complexation Reactions. Pharmazie 2007, 62, 34-37. https://pubmed.ncbi.nlm.nih.gov/17294810

[24] Mohamed, S.H.; Issa, Y.M.; Elfeky, S.A. Extraction-Free Spectrophotometric Assay of the Antitussive Drug Pentoxyverine Citrate Using Sulfonephthalein Dyes. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2019, 222, 117186. https://doi.org/10.1016/j.saa.2019.117186
https://doi.org/10.1016/j.saa.2019.117186

[25] Mohamed, S.H.; Issa, Y.M.; Elfeky, S.A.; Ahmed, A.A.; Abdel-Kader, N.S. Spectroscopic, Thermogravimetric Studies and DFT Calculations of Pentoxyverine Citrate Ion-Pairs with Sulfonephthalein Dyes. J. Mol. Struct. 2020, 1212, 128074. https://doi.org/10.1016/j.molstruc.2020.128074
https://doi.org/10.1016/j.molstruc.2020.128074

[26] Alizadeh, N.; Keyhanian, F. Sensitive and Selective Spectrophotometric Assay of Piroxicam in Pure Form, Capsule and Human Blood Serum Samples via Ion-Pair Complex Formation. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2014, 130, 238-244. https://doi.org/10.1016/j.saa.2014.03.074
https://doi.org/10.1016/j.saa.2014.03.074

[27] Kumar, A.; Singh, V.; Kumar, P. Spectrophotometric Estimation of Eflornithine Hydrochloride by Using Ion-Pair Reagents. Pak. J. Pharm. Sci. 2015, 28, 623-629. https://pubmed.ncbi.nlm.nih.gov/25730793

[28] Mabrouk, M.M.; Gouda, A.A.; El-Malla, S.F.; Abdel Haleem, D.S. Sensitive Spectrophotometric Determination of Vardenafil HCl in Pure and Dosage Forms Détermination Spectrophotométrique Sensible du Vardénafil HCl Sous Formes Pures et Posologiques. Ann. Pharm. Franç. 2021, 79, 16-27. https://doi.org/10.1016/j.pharma.2020.08.003
https://doi.org/10.1016/j.pharma.2020.08.003

[29] Garg, B.; Bisht, T., Ling, Y.-C. Colorimetric Recognition of Hydrazine in Aqueous solution by a Bromophenol Blue-Tethered Ion-pair-like Ratiometric Probe. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2021, 251, 119456.
https://doi.org/10.1016/j.saa.2021.119456

https://doi.org/10.1016/j.saa.2021.119456
https://doi.org/10.1016/j.saa.2021.119456

[30] van de Logt, A.-E.; Rijpma, S.R.; Vink, C.H.; Prudon-Rosmulder, E.; Wetzels, J.F.; van Berkel, M. The Bias between Different Albumin Assays May Affect Clinical Decision-Making. Kidney Int. 2019, 95, 1514-1517. https://doi.org/10.1016/j.kint.2019.01.042
https://doi.org/10.1016/j.kint.2019.01.042

[31] Zeybek, D.K.; Demir, B.; Zeybek, B.; Pekyardýmcý, Þ. A Sensitive Electrochemical DNA Biosensor for Antineoplastic Drug 5-Fluorouracil Based on Glassy Carbon Electrode Modified with Poly(Bromocresol Purple). Talanta 2015, 144, 793-800. https://doi.org/10.1016/j.talanta.2015.06.077
https://doi.org/10.1016/j.talanta.2015.06.077

[32] Aljerf, L. High-Efficiency Extraction of Bromocresol Purple Dye and Heavy Metals as Chromium from Industrial Effluent by Adsorption onto a Modified Surface of Zeolite: Kinetics and equilibrium study. J. Environ. Manage 2018, 225, 120-132. https://doi.org/10.1016/j.jenvman.2018.07.048
https://doi.org/10.1016/j.jenvman.2018.07.048

[33] Kim,Y.H.; Sathiyanarayanan, G.; Kim, H.J.; Bhatia, S.K.; Seo, H.-M.; Kim, J.-H.; Song, H.-S.; Kim, Y.-G.; Park, K.; Yang, Y.-H. A Liquid-Based Colorimetric Assay of Lysine Decarboxylase and Its Application to Enzymatic Assay. J. Microbiol. Biotechnol. 2015, 25, 2110-2115. https://doi.org/10.4014/jmb.1505.05063
https://doi.org/10.4014/jmb.1505.05063

[34] Zeng, J.; Eckenrode, H.M.; Dai, H.-L.; Wilhelm, M.J. Adsorption and Transport of Charged vs. Neutral Hydrophobic Molecules at the Membrane of Murine Erythroleukemia (MEL) Cells. Colloids Surf. B: Biointerfaces 2015, 127, 122-129. https://doi.org/10.1016/j.colsurfb.2015.01.014
https://doi.org/10.1016/j.colsurfb.2015.01.014

[35] Thompson, S.; Ding, L.-E. Underestimation of the Serum Ascites Albumin Gradient by the Bromocresol Purple Method of Albumin Measurement. Intern. Med. J. 2018, 48, 1412-1413. https://doi.org/10.1111/imj.14101
https://doi.org/10.1111/imj.14101

[36] Garcia Moreira, V.; Beridze Vaktangova, N.; Martinez Gago, M.D.; Laborda Gonzalez, B.; Garcia Alonso, S.; Fernandez Rodriguez, E. Overestimation of Albumin Measured by Bromocresol Green vs Bromocresol Purple Method: Influence of Acute-Phase Globulins. Lab. Med. 2018, 49, 355-361. https://doi.org/10.1093/labmed/lmy020
https://doi.org/10.1093/labmed/lmy020

[37] Le Reun, E.; Leven, C.; Lapègue, M.; Kerspern, H.; Rouillé, A.; Labarre, M.; Carré, J.-L.; Padelli, M. Assessment of Immunoturbidimetric DiAgam Kit for Plasma Albumin Measurement: A Comparative Study. Ann. Biol. Clin. (Paris) 2018, 76, 477-479. https://doi.org/10.1684/abc.2018.1361d
https://doi.org/10.1684/abc.2018.1361d

[38] Delanghe, S.; Van Biesen, W.; Van de Velde, N.; Eloot, S.; Pletinck, A.; Schepers, E.; Glorieux, G.; Delanghe, J.R.; Speeckaert, M.M. Binding of Bromocresol Green and Bromocresol Purple to Albumin in Hemodialysis Patients. Clin. Chem. Lab. Med. 2018, 56, 436. https://doi.org/10.1515/cclm-2017-0444
https://doi.org/10.1515/cclm-2017-0444

[39] Pan, W.C.; Lau, W.; Mattman, A.; Kiaii, M.; Jung, B. Comparison of Hypoalbuminemia-Corrected Serum Calcium Using BCP Albumin Assay to Ionized Calcium and Impact on Prescribing in Hemodialysis Patients. Clin. Nephrol. 2018, 89, 34-40. https://doi.org/10.5414/CN109070
https://doi.org/10.5414/CN109070

[40] Ueno, T.; Hirayama, S.; Sugihara, M.; Miida, T. The Bromocresol Green Assay, but not the Modified Bromocresol Purple Assay, Overestimates the Serum Albumin Concentration in Nephrotic Syndrome through Reaction with á2-Macroglobulin. Ann. Clin. Biochem. 2016, 53, 97. https://doi.org/10.1177/0004563215574350
https://doi.org/10.1177/0004563215574350

[41] Yoshihiro, S.; Ishigaki, T.; Ookurano, H.; Yoshitomi, F.; Hotta, T.; Kang, D.; Hokazono, E.; Kayamori, Y. New Colorimetric Method with Bromocresol Purple for Estimating the Redox State of Human Serum Albumin. J. Clin. Biochem. Nutr. 2020, 67, 257-262. https://doi.org/10.3164/jcbn.20-10
https://doi.org/10.3164/jcbn.20-10

[42] Chmelová, D.; Ondrejoviè, M. Purification and Characterization of Extracellular Laccase Produced by Ceriporiopsis Subvermispora and Decolorization of Triphenylmethane Dyes. J. Basic Microbiol. 2016, 56, 1173-1182. https://doi.org/10.1002/jobm.201600152
https://doi.org/10.1002/jobm.201600152

[43] Shapovalov, S.A.; Koval, V.L.; Chernaya, T.A.; Pereverzev, A.Yu.; Derevyanko, N.A.; Ishchenko, A.A.; Mchedlov-Petrossyan, N.O. Association of Indopolymethine Cyanine Cations with Anions of Sulfonephthalein and Xanthene Dyes in Water. J. Brazil. Chem. Soc. 2005, 16, 232. https://doi.org/10.1590/S0103-50532005000200017
https://doi.org/10.1590/S0103-50532005000200017

[44] Shapovalov, S.; Kiseliova, Ya. Association of Thymolsulfonephthalein and Cresolsulfonephthalein Anions with Cationic Cyanines in Aqueous Solution. Chem. Chem. Technol. 2010, 4, 271-276. https://doi.org/10.23939/chcht04.04.271
https://doi.org/10.23939/chcht04.04.271

[45] Shapovalov, S. Association of Quinaldine Red Cation in an Aqueous Solution: The Interaction with Anionic Dyes. AASCIT Journal of Nanoscience 2018, 3, 35-40.

[46] Shapovalov, S.; Kiseliova, Ya. Heteroassociation of the Bromine-Containing Anions of Sulfophthaleins in Aqueous Solution. Russ. Chem. Bull. 2010, 59, 1317-1326. https://doi.org/10.1007/s11172-010-0241-x
https://doi.org/10.1007/s11172-010-0241-x

[47] Šapovalov, S.; Samojlov, E.; Yvanov, V. Chymyja i chym. technolohyja 2006, 49, 39-44.

[48] Shapovalov, S. Association of Anions of Phenolsulfonephthalein and its Alkyl-Substituted Derivatives with Single-Charged Cations of Polymethines. Russ. Chem. Bull. 2011, 60, 465. https://doi.org/10.1007/s11172-011-0073-3
https://doi.org/10.1007/s11172-011-0073-3

[49] Gupta, D.; Read, J. First pKa Values of Some Acid-Base Indicators. J. Pharm. Sci. 1970, 11, 1683-1685. https://doi.org/10.1002/jps.2600591136
https://doi.org/10.1002/jps.2600591136

[50] Herz, A. Photogr. Sci. Eng. 1974, 18, 207-215.
https://doi.org/10.1177/000494417401800214

[51] Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627-1639. https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047

[52] Paris, Q. The Dual of the Least-Squares Method. Open J. Statist. 2015, 5, 658-664. https://doi.org/10.4236/ojs.2015.57067
https://doi.org/10.4236/ojs.2015.57067

[53] Shapovalov, S.; Samoilov, E. Regularities of Homo- and Heteroassociation of the Pinacyanol Cation in Aqueous Solution. Russ. Chem. Bull. 2008, 57, 1405-1415. https://doi.org/10.1007/s11172-008-0183-8
https://doi.org/10.1007/s11172-008-0183-8

[54] Ishchenko, A.; Shapovalov, S. Heterogeneous Association of the Ions of Dyes in Solutions (Review). J. Appl. Spectrosc. 2004, 71, 605-629. https://doi.org/10.1023/B:JAPS.0000049618.42857.0a
https://doi.org/10.1023/B:JAPS.0000049618.42857.0a

[55] Šapovalov, S.; Svyščeva, Ja. Visnyk Charkiv. Nacionalʹn. in-tu. Chimija 2000, 477, 112. (in Ukrainian)

[56] Veselkov, D.; Evstyhneev, M.; Kodyncev, V. Žurn. fyzyč. chymyy 2001, 75, 879.

[57] Veselkov, D.; Syhaev, V.; Vysockyj, S. Žurn. strukt. chymyy 2000, 41, 86.
https://doi.org/10.1007/BF02684731

[58] Šapovalov, S. Ukr. chymyč. žurn. 2004, 70, 25.

[59] Martins, T.D.; Pacheco, M.L.; Boto, R.E.; Almeida, P.; Farinha, J.P.S.; Reis, L.V. Synthesis, Characterization and Protein-Association of Dicyanomethylene Squaraine Dyes. Dyes Pigm. 2017, 147, 120-129. https://doi.org/10.1016/j.dyepig.2017.07.070
https://doi.org/10.1016/j.dyepig.2017.07.070

[60] Barbero, N.; Butnarasu, C.; Visentin, S.; Barolo, C. Squaraine Dyes: Interaction with Bovine Serum Albumin to Investigate Supramolecular Adducts with Aggregation-Induced Emission (AIE) Properties. Chem. Asian J. 2019, 14, 896-903. https://doi.org/10.1002/asia.201900055
https://doi.org/10.1002/asia.201900055

[61] Hovor, I.V.; Fedyunyayeva, I.A.; Obukhova, O.M.; Kolosova, O.S.; Tatarets, A.L. Zastosuvannya Styrylovogo ta Skvarainovogo Barvnykiv dla Vyznachennya Konformatsiinykh Zmin u Molekulakh Proteiniv. Odesa National University Herald. Chemistry 2020, 25, 94. https://doi.org/10.18524/2304-0947.2020.3(75).212477 (in Ukrainian)
https://doi.org/10.18524/2304-0947.2020.3(75).212477

[62] Ilina, K.; MacCuaig, W.M.; Laramie, M.; Jeouty, J.N.; McNally, L.R.; Henary, M. Squaraine Dyes: Molecular Design for Different Applications and Remaining Challenges. Bioconjugate Chem. 2020, 31, 194-213. https://doi.org/10.1021/acs.bioconjchem.9b00482
https://doi.org/10.1021/acs.bioconjchem.9b00482

[63] Kortekaas, L.; Browne, W.R. The Evolution of Spiropyran: Fundamentals and Progress of an Extraordinarily Versatile Photochrome. Chem. Soc. Rev. 2019, 48, 3406-3424. https://doi.org/10.1039/C9CS00203K - https://pubs.rsc.org/en/content/articlelanding/2019/cs/c9cs00203k
https://doi.org/10.1039/C9CS00203K

[64] Zhang, Y.; Ng, M.; Chan, M.H.-Y.; Wu, N.M.-W.; Wu, L.; Yam, V.W.-W. Synthesis and Characterization of Photochromic Triethylene Glycol-Containing Spiropyrans and their Assembly in Solution. Org. Chem. Front. 2021, 8, 3047-3058. https://doi.org/10.1039/D1QO00316J
https://doi.org/10.1039/D1QO00316J

[65] Zurita, A.; Duran, A.; Ribó, J.M.; El-Hachemi, Z.; Crusats, J. Hyperporphyrin Effects Extended into a J-Aggregate Supramolecular Structure in Water. RSC Adv. 2017, 7, 3353-3357. https://doi.org/10.1039/C6RA27441B
https://doi.org/10.1039/C6RA27441B

[66] Gaeta, M.; Sortino, G.; Randazzo, R.; Pisagatti, I.; Notti, A.; Fragalà, M.E.; Parisi, M.F.; D'Urso, A.; Purrello, R. Long-Range Chiral Induction by a Fully Noncovalent Approach in Supramolecular Porphyrin-Calixarene Assemblies. Chem. Eur. J. 2020, 26, 3515-3318. https://doi.org/10.1002/chem.202000126
https://doi.org/10.1002/chem.202000126

[67] Pronkin, P.G.; Tatikolov, A.S. Formation of J-Aggregates of an Anionic Oxacarbocyanine Dye Upon Interaction with Proteins and Polyelectrolytes. J. Appl. Spectrosc. 2017, 84, 217-224. https://doi.org/10.1007/s10812-017-0454-y
https://doi.org/10.1007/s10812-017-0454-y

[68] Bricks, J.L.; Slominskii, Y.L.; Panas, I.D.; Demchenko, A.P. Fluorescent J-Aggregates of Cyanine Dyes: Basic Research and Applications Review. Methods Appl. Fluoresc. 2017, 6, 012001. https://doi.org/10.1088/2050-6120/aa8d0d
https://doi.org/10.1088/2050-6120/aa8d0d

[69] Nordhaus, M.A.; Krongauz, V.V.; Hai, T.T. Synthesis of Solvatochromic Merocyanine Dyes and their Immobilization to Polymers. J. Appl. Polym. Sci. 2017, 134, 44451. https://doi.org/10.1002/app.44451
https://doi.org/10.1002/app.44451

[70] Pasch, P.; Papadopoulos, J.; Goralczyk, A.; Hofer, M.L.; Tabatabai, M.; Müller, T.J.J.; Hartmann, L. Highly Fluorescent Merocyanine and Cyanine PMMA Copolymers. Macromol. Rapid Comm. 2018, 39, 1800277. https://doi.org/10.1002/marc.201800277
https://doi.org/10.1002/marc.201800277

[71] Dewar, M.J.S.; Storch, D.M. Development and Use of Quantum Molecular Models. 75. Comparative Tests of Theoretical Procedures for Studying Chemical Reactions. J. Am. Chem. Soc. 1985, 107, 3898-3902. https://doi.org/10.1021/ja00299a023
https://doi.org/10.1021/ja00299a023

[72] Stewart, J.J.P. Optimization of Parameters for Semiempirical Methods I. Method. J. Comput. Chem. 1989, 10, 209-220. https://doi.org/10.1002/jcc.540100208
https://doi.org/10.1002/jcc.540100208