Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Шкіряні відходи в енергію: екологічні переваги. Огляд

Olena Mokrousova1, Olena Okhmat1, Halyna Sakalova2, Vitalii Ishchenko2, Myroslav Malovanyy3
Affiliation: 
1 Department of Biotechnology, Leather and Fur, Kyiv National University of Technologies and Design, 2 Mala Shyianovska St., 01011 Kyiv, Ukraine 2 Department of Ecology, Chemistry and Environmental Protection Technologies, Vinnytsia National Technical University, 95 Khmelnytske shose, 21021 Vinnytsia, Ukraine 3 Lviv Polytechnic National University, 12 S. Bandery St., 79013 Lviv, Ukraine sakalova@vntu.edu.ua
DOI: 
https://doi.org/10.23939/chcht19.01.131
AttachmentSize
PDF icon full_text.pdf825.29 KB
Abstract: 
У цьому огляді ми окреслили основні підходи до розробки процесів вилучення енергії зі шкіряних відходів. Обговорено виклики та можливості для прискорення утилізації твердих шкіряних відходів для виробництва біопалива. Розглянуто перспективні методи переробки біомаси, хромових відходів, осадів стічних вод і жирів на біоенергетичну сировину.
References: 

[1] Voytovych, I.; Malovanyy, M.; Zhuk, V.; Mukha, O. Facilities and Problems of Processing 498 Organic Wastes by Family-Type Biogas Plants in Ukraine. J. Water Land Dev. 2020, 45, 185–189. https://doi.org/10.24425/jwld.2020.133493
[2] Zhaldak, M.P.; Polyuha, V.; Mokrousova, O. Vprovadzhennya pryntsypiv staloyi bioekonomiky pry pererobtsi syrovyny biohennoho pokhodzhennya. Zelena transformatsiya ta stiyka bioekonomika; KNUTD: Kyiv, 2024; pp 383–415 (in Ukranian).
[3] Maistrenko, L.; Iungin, O.; Pikus, P.; Pokholenko, І.; Gorbatiuk, О.; Moshynets, О.; Okhmat, О.; Kolesnyk, Т.; Potters, G.; Mokrousova, O. Collagen Obtained from Leather Production Waste Provides Suitable Gels for Biomedical Applications. Polymers 2022, 14, 4749. https://doi.org/10.3390/polym14214749
[4] Malovanyy, А.; Plaza, E.; Trela, J.; Malovanyy, M. Combination of Ion Exchange and Partial Nitritation/Anammox Process for Ammonium Removal from Mainstream Municipal Wastewater. Water Sci. Technol. 2014, 70, 144–151. https://doi.org/10.2166/wst.2014.208
[5] Tulaydan, Y.; Malovanyy, M.; Kochubei, V.; Sakalova, H. Treatment of High-Strength Wastewater from Ammonium and Phosphate Ions with the Obtaining of Struvite. Chem. Chem. Technol. 2017, 11, 463–468. https://doi.org/10.23939/chcht11.04.463
[6] Shmandiy, V.; Bezdeneznych, L.; Kharlamova, О.; Svjatenko, A.; Malovanyy, M.; Petrushka, K.; Polyuzhyn, I. Methods of Salt Content Stabilization in Circulating Water Supply Systems. Chem. Chem. Technol. 2017, 11, 242–246. https://doi.org/10.23939/chcht11.02.242
[7] Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Contreras, A.B.; Hassan, N.; El Rasoul, A.A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61–73. https://doi.org/10.23939/chcht15.01.061
[8] Pstrowska, K.; Łużny, R.; Fałtynowicz, H.; Jaroszewska, K.; Postawa, K.; Pyshyev, S.; Witek-Krowiak, A. Unlocking Sustainability: A Comprehensive Review of up-Recycling Biomass Waste into Biochar for Environmental Solutions. Chem. Chem. Technol. 2024, 18, 211–231. https://doi.org/10.23939/chcht18.02.211
[9] Bordun, І.; Vasylinych, T.; Malovanyy, M.; Sakalova, H.; Liubchak, L.; Luchyt, L. Study of Adsorption of Differently Charged Dyes by Carbon Adsorbents. Desal. Water Treat. 2023, 288, 151–158. http://doi.org/10.5004/dwt.2023.29332
[10] Malovanyy, M.; Nikiforov, V.; Kharlamova, O.; Synelnikov O. Production of Renewable Energy Resources via Complex Treatment of Cyanobacteria Biomass. Chem. Chem. Technol. 2016, 10, 251–254. https://doi.org/10.23939/chcht10.02.251
[11] Tymchuk, I.; Malovanyy, M.;, Shkvirko, O.; Yatsukh, K. Sewage Sludge as a Component to Create a Substrate for Biological Reclamation. Ecol. Eng. Environ. Technol. 2021, 22, 229–237. https://doi.org/ 10.12912/27197050/137863
[12] Malovanyy, M.; Moroz, O.; Popovich, V.; Kopiy, M.; Tymchuk, I.; Sereda, A.; Krusir, G.; Soloviy, C. The Perspective of Using the "Open Biological Conveyor" Method for Purifying Landfill Filtrates. Environ. Nanotechnol. Monit. Manage. 2021, 16, 100611. https://doi.org/10.1016/j.enmm.2021.100611
[13] Mokrousova, E., Dzyazko, Y., Volfkovich, Y., Nikolskaya, N. Hierarchical Structure of the Derma Affected by Chemical Treatment and Filling with Bentonite: Diagnostics with a Method of Standard Contact Porosimetry. In Nanophysics, Nanophotonics, Surface Studies, and Applications; Fesenko, O.; Yatsenko, L., Eds.; Springer, Cham., 2016; pp 277–290.
[14] Karavayev,T.; Mokrousova,O.; Yazvinska, K.; Zhaldak, M.; Tkachuk,V. Expert Examination of Leather in International Trade: Ukrainian Experience. Leather and Footwear Journal 2023, 23, 93–106. https://doi.org/10.24264/lfj.23.2.3
[15] Nilson, L.t; Persson, P.O.; Rydén, L.; Darozhka, S.; Zaliauskiene, A. Cleaner Production Technologies and Tools for Resource Efficient Production; The Baltic University Press, 2007.
[16] Covington, A. The chemistry of tanning materials. In Conservation of Leather and Related Materials; Taylor and Francis, 2006.
[17] Marukhlenko, M.; Mokrousova, О.; Okhmat, O. New Tanning Agent with Montmorillonite for Leather Manufacturing. Solid State Phenomena 2017, 267, 52–57. https://doi.org/10.4028/www.scientific.net/SSP.267.52
[18] Mokrousova, O.; Danylkovych, A.; Palamar, V. Resourse-saving chrome tannage of leather with modified montmorillonite. In Resourse-saving technologies for the production of elastic leather materials; Baltija Publishing, 2020; рр 119-129.
[19] Kovtunenko, O.; Travinskaya, T.; Mokrousova, O. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing. Materials Science (Medžiagotyra) 2016, 22, 394–399. https://doi.org/10.5755/j01.ms.22.3.10043
[20] Pati, A.; Chaudhary, R.; Subramani, S. A Review on Management of Chrome-Tanned Leather Shavings: A Holistic Paradigm to Combat the Environmental Issues. Environ. Sci. Pollut. Res. 2014, 21, 11266–11282.
[21] Parisi, M.; Nanni, A.; Colonna, M. Recycling of Chrome-Tanned Leather and Its Utilization as Polymeric Materials and in Polymer-Based Composites: A Review. Polymers 2021, 13, 429. https://doi.org/10.3390/ polym13030429
[22] Rigueto, C.V.T.; Rosseto, M.; Krein, D.D.C.; Ostwald, B.E.P.; Massuda, L.A.; Zanella, B.B.; Dettmer, A. Alternative Uses for Tannery Wastes: A Review of Environmental, Sustainability, and Science. J Leather Sci Eng 2020, 2, 5332. https://doi.org/10.1186/s42825-020-00034-z
[23] Biškauskaitė, R.; Miškūnaitė, L.; Plavan, V.; Valeika, V. Hydrolysis of Used Leather and Application of Hydrolysates. Proc. Est. Acad. Sci. 2024, 73, 60–67. https://doi.org/10.3176/proc.2024.1.07
[24] Yang, J.E.; Shan, Z.H; Zhang, Y.W.; Chen, L.W. Stabilization and Cyclic Utilization of Chrome Leather Shavings. Environ Sci Pollut Res. 2019, 26, 4680–4689. https://doi.org/10.1007/s11356-018-3687-2
[25] Savchuk, O.; Raksha, N.; Ostapchenko, L.; Mokrousova, О.; Andreyeva, Olga. Extraction and Characterization of Collagen Obtained from Collagen-Containing Wastes of the Leather Industry. Solid State Phenomena 2017, 267, 172–176. https://doi.org/10.4028/www.scientific.net/SSP.267.172
[26] Moktadir, Md.A.; Ren, J.; Zhou, J.; A Systematic Review on Tannery Sludge to Energy Route: Current Practices, Impacts, Strategies, and Future Directions. Sci. Total Environ. 2023, 901, 166244. https://doi.org/10.1016/j.scitotenv.2023.166244
[27] Savchuk, O.; Rebrikova, P.; Vovk, T.; Raksha, N.; Ostapchenko, L.; Mokrousova, O. Use of Waste from the Leather Industry for the Production of Biotechnological Products Based on Collagen. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 500, 012020. https://doi.org/10.1088/1757-899X/500/1/012020
[28] Ranskiy, A.; Gordienko, О.; Korinenko, B.; Ishchenko, V.; Sakalova, H.; Vasylinych, T.; Malovanyy, M. Pyrolysis Processing of Polymer Waste Components of Electronic Products. Chem. Chem. Technol. 2024, 18, 103–108. https://doi.org/10.23939/chcht18.01.103
[29] Li, Y.; Guo, R.; Lu, W.; Zhu, D. Research Progress on Resource Utilization of Leather Solid Waste. J Leather Sci Eng 2019, 1, 6. https://doi.org/10.1186/s42825-019-0008-6
[30] Ma, J.Z.; Lv, B.; Yan, M. Preparation of Emulsifier for Ethanol-Diesel Fuel from Tannery Waste Oil. Petroleum Processing and Petrochemicals 2011, 42, 73–77.
[31] Tang, W.L.; Zhao, H. Industrial Biotechnology: Tools and Applications. Biotechnol. J. 2009, 4, 1725–1739. https://doi.org/10.1002/biot.200900127
[32] Kirtay, E. Recent Advance in Production of Hydrogen from Biomass. Energy Convers. Manage. 2011, 52, 1778–1789. https://doi.org/10.1016/j.enconman.2010.11.010
[33] Pavlas, M.; Stehlík, P.; Oral, J.; Klemeš, J.; Kim, J.K.; Firth, B. Heat Integrated Heat Pumping for Biomass Gasification Processing. Appl. Therm. Eng. 2010, 30, 120–128. https://hal.science/hal-00589453
[34] Malovanyy, M.; Nykyforov, V.; Kharlamova, O.; Synelnikov, O. Mathematical Model of the Process of Synthesis of Biogas from Blue-Green Algae. Ecological safety 2015, 1, 58–63.
[35] Malovanyy, M.; Nykyforov, V.; Kharlamova, O.; Synelnikov, O.; Dereyko. K.; Reduction of the Environmental Threat from Uncontrolled Development of Cyanobacteria in Waters of Dnipro Reservoirs. Environmental problems 2016, 1, 61–64.
[36] Korol, R.; Sakalova, H. Methanogenesis of Waste in Technical Systems as an Energy Conservation Factor. Personality and Environmental Issues 2022, 2, 22–25. https://doi.org/10.31652/2786-6033-2022-1(2)-22-25
[37] Pavliukh, L.; Boichenkо, S.; Onopa, V.; Tykhenko,O.; Topilnytskyy, P.; Romanchuk, V.; Samsin, I. Resource Potential for Biogas Production in Ukraine. Chem. Chem. Technol. 2019, 13, 101–106. https://doi.org/10.23939/chcht13.01.101
[38] Dutta, S.; Saravanabhupathy, S.; Anusha Rajak, R. C.; Banerjee R.; Dikshit P. K.; Padigala, C. T.; Das, A.K.; Kim B.S. Recent Developments in Lignocellulosic Biofuel Production with Nanotechnological Intervention: An Emphasis on Ethanol. Catalysts 2023, 13, 1439. https://doi.org/10.3390/catal13111439
[39] Kręgiel, D.; Pawlikowska, E.; Antolak, H. Non-Conventional Yeasts in Fermentation Processes: Potentialities and Limitations. In Old Yeast – New Question; Lukas, C.; Pais, C., Eds.; IntechOpen, 2017; pp 87–116.
[40] Ribun, V.; Kurta, S.; Gromovy, T.; Khatsevich, O. Improving the Technology Synthesis and Properties of Biodiesel. Physics and Chemistry of Solid State 2018, 19, 258–269. https://doi.org/10.15330/pcss.19.3.258-269
[41] Alibardi, L.; Cossu, R.; Pre-Treatment of Tannery Sludge for Sustainable Landfilling. Waste Manage. 2016, 52, 202–211. https://doi.org/10.1016/j.wasman.2016.04.008
[42] Dixit, S.; Yadav, A.; Dwivedi, PD.; Das, M. Toxic Hazards of Leather Industry and Technologies to Combat Threat: A Review. J. Clean. Prod. 2015, 87, 39–49. https://doi.org/10.1016/j.jclepro.2014.10.017
[43] Chojnacka, K.; Skrzypczak, D.; Mikula, K.; Witek-Krowiak, A.; Izydorczyk, G.; Kuligowski, K.; Bandrów, P.; Kułażyński, M. Progress in Sustainable Technologies of Leather Wastes Valorization as Solutions for the Circular Economy. J. Clean. Prod. 2021, 313, 127902. https://doi.org/10.1016/j.jclepro.2021.127902
[44] Simioni, T.; Agustini, C.B.; Dettmer, A.; Gutterres, M. Nutrient Balance for Anaerobic Co-Digestion of tannery Wastes: Energy Efficiency, Waste Treatment and Cost-Saving. Bioresour. Technol. 2020, 308, 123255. https://doi.org/10.1016/j.biortech.2020.123255
[45] Xu, R.; Zhang, K.; Liu, P.; Khan, A.; Xiong, J.; Tian, F.; Li, X. A Critical Review on the Interaction of Substrate Nutrient Balance and Microbial Community Structure and Function in Anaerobic Co-Digestion. Bioresour. Technol. 2018, 247, 1119–1127. https://doi.org/10.1016/j. biortech.2017.09.095
[46] Bayrakdar, A. Anaerobic Co-Digestion of Tannery Solid Wastes: A Comparison of Single and Two-Phase Anaerobic Digestion. Waste Biomass Valorization 2020, 11, 1727–1735. https://doi.org/10.1007/s12649-019-00902-8
[47] Zupančič, G.D.; Jemec, A. Anaerobic Digestion of Tannery Waste: Semi Continuous and Anaerobic Sequencing Batch Reactor Processes. Bioresour Technol. 2010, 101, 26–33. https://doi.org/10.1016/jbiortech200907028
[48] Li, Y.; Park, SY.; Zhu, J. Solid-State Anaerobic Digestion for Methane Production from Organic Waste. Renewable Sustainable Energy Rev. 2010, 15, 821–826. https://doi.org/10.1016/ jrser201007042
[49] Agustini, C.B.; Da Fontoura, J.T.; Mella, B.; Gutterres, M.; Evaluating Co-Substrates to Supplement Biogas Production from Tannery Solid Waste Treatment– Cattle Hair, Microalgae Biomass, and Silicone. Biofuels, Bioprod. Biorefin. 2018, 12, 1095–1102. https://doi.org/10.1002/bbb.1929
[50] Kameswari, K.S.B.; Kalyanaraman, C.; Thanasekaran, K. Effect of Ozonation and Ultrasonication Pretreatment Processes on Co-Digestion of Tannery Solid Wastes. Clean Technologies and Environmental Policy 2011, 13, 517–525.
[51] Kameswari, SBK.; Kalyanaraman, C.; Porselvam, S.; Thanasekaran, K. Enhancement of Biogas Generation by Addition of Lipase in the Co-Digestion of Tannery Solid Wastes. Clean Soil Air Water 2011, 39, 781–786. https://doi.org/10.1002/clen.201000408
[52] Golub, N.B.; Shinkarchuk, M.B.; Shynkarchuk, A.V.; Xinhua, Zh. Y.; Kozlovets O. A. Vulnerabilities in the Production of Biogas from the Fat-Containing Tannery Waste. Innovative Biosyst. Bioeng. 2019, 3, 253–260. https://doi.org/10.20535/ibb.2019.3.4.185425
[53] Golub, N.; Shinkarchuk, М.; Kozlovets, О.; Morgun, M.; Lakhneko, О.; Stepanenko, А.; Borisjuk, М. Determination of Biogas Producers in Antibiotic-Containing Sewage. Water Air Soil Pollut. 2020, 231, 445. https://doi.org/10.1007/s11270-020-04805-6
[54] Abbas, N.; Jamil, N.; Deeba, F. Potential of Biogas in Waste Activated Tannery Sludge by Anaerobic Co-Digestion. Asian J. Chem. 2015, 27, 697–700. https://doi.org/10.14233/ajchem.2015.17773
[55] Agustini, C.; da Costa, M.; Gutterres, M. Biogas Production from Tannery Solid Wastes – Scale-Up and Cost Saving Analysis. J. Clean. Prod. 2018, 187, 158–164. https://doi.org/10.1016/j.jclepro.2018.03.185
[56] İşler, A.; Sundu, S.; Tüter, M.; Karaosmanoğlu, F. Transesterification Reaction of the Fat Originated from Solid Waste of the Leather Industry. Waste Manage. 2010, 30, 2631–2635. https://doi.org/10.1016/j.wasman.2010.06.005
[57] Ramos, L.; Fernandes, R.; Crispim, A.; Ramalho, E.; Caetano, N.; Silva, P. Biodiesel Production from Leather Industry Wastes. Proceedings of the 10th International Chemical and Biological Engineering Conference 2008, 6, 381–390.
[58] Adewale, P.; Dumont, MJ.; Ngadi, M. Recent Trends of Biodiesel Production from Animal Fat Wastes and Associated Production Techniques. Renew Sust. Energ. 2015, 45, 574–588. https://doi.org/10.1016/j.rser.2015.02.039
[59] Kolomazník, K.; Pecha, J.; Barinova, M.; Šánek, L.; Furst, T.; Janacova, D. Potential of Tannery Fleshings in Biodiesel Production an Mathematical Modeling of the Fleshing Pre-Treatment. International Journal of Mathematics and Computers in Simulation 2012, 6, 456–464.
[60] Šánek, L.; Pecha, J.; Kolomazník, K.; Bařinová, M. Biodiesel Production from Tannery Fleshings: Feedstock Pretreatment and Process Modeling. Fuel 2015, 148, 16–24. https://doi.org/10.1016/j.fuel.2015.01.084
[61] Altun, S.; Yasar, F. Biodiesel Production from Leather Industry Wastes as an Alternative Feedstock and its Use in Diesel Engines. Energy Explor. Exploit. 2013, 31, 759–770. https://doi.org/10.1260/0144-5987.31.5.759
[62] Booramuthy, V.K.; Kasimani, R.; Pandian, S. Biodiesel Production from Tannery Waste using a Nano Catalyst (Ferric-Manganese Doped Sulphated Zirconia). Energy Sources Part A 2019, 44, 1092–1104. https://doi.org/10.1080/15567036.2019.1639849
[63] Souza, E.; Silva, L. Energy Recovery from Tannery Sludge Wastewaters through Photocatalytic Hydrogen Production. J. Environ. Chem. Eng. 2016, 4, 2114–2120. https://doi.org/10.1016/j.jece.2016.03.040
[64] Kumar, V.; Thakur, I.S. Extraction of Lipids and Production of Biodiesel from Secondary Tannery Sludge by in situ Transesterification. Bioresour. Technol. Rep. 2020, 11, 100446. https://doi.org/10.1016/j.biteb.2020.100446
[65] Boocock, D.G.B.; Konar, S.K.; Leung, A.; Ly, L.D. Fuels and Chemicals from Sewage Sludge: 1. The Solvent Extraction and Composition of a Lipid from a Raw Sewage Sludge. Fuel 1992, 71, 1283–1289. https://doi.org/10.1016/0016-2361(92)90055-S
[66] Li, Q.; Du, W.; Liu, D.; Perspectives of Microbial Oils for Biodiesel Production. Appl. Microbiol. Biotechnol. 2008, 80, 749–756. https://doi.org/10.1007/s00253-008-1625-9
[67] Dang, X.; Yang, M.; Zhang, B.; Chen, H.; Wang, Y.; Recovery and Utilization of Collagen Protein Powder Extracted from Chromium Leather Scrap Waste. Environ. Sci. Pollut. Res. 2019, 26, 7277–7283. https://doi.org/10.1007/s11356-019-04226-x