Leather Waste to Energy: Environmental Benefits. A Review
Attachment | Size |
---|---|
![]() | 825.29 KB |
[1] Voytovych, I.; Malovanyy, M.; Zhuk, V.; Mukha, O. Facilities and Problems of Processing 498 Organic Wastes by Family-Type Biogas Plants in Ukraine. J. Water Land Dev. 2020, 45, 185-189. https://doi.org/10.24425/jwld.2020.133493
https://doi.org/10.24425/jwld.2020.133493
[2] Zhaldak, M.P.; Polyuha, V.; Mokrousova, O. Vprovadzhennya pryntsypiv staloyi bioekonomiky pry pererobtsi syrovyny biohennoho pokhodzhennya. Zelena transformatsiya ta stiyka bioekonomika; KNUTD: Kyiv, 2024; pp 383-415 (in Ukranian).
[3] Maistrenko, L.; Iungin, O.; Pikus, P.; Pokholenko, І.; Gorbatiuk, О.; Moshynets, О.; Okhmat, О.; Kolesnyk, Т.; Potters, G.; Mokrousova, O. Collagen Obtained from Leather Production Waste Provides Suitable Gels for Biomedical Applications. Polymers 2022, 14, 4749. https://doi.org/10.3390/polym14214749
https://doi.org/10.3390/polym14214749
[4] Malovanyy, А.; Plaza, E.; Trela, J.; Malovanyy, M. Combination of Ion Exchange and Partial Nitritation/Anammox Process for Ammonium Removal from Mainstream Municipal Wastewater. Water Sci. Technol. 2014, 70, 144-151. https://doi.org/10.2166/wst.2014.208
https://doi.org/10.2166/wst.2014.208
[5] Tulaydan, Y.; Malovanyy, M.; Kochubei, V.; Sakalova, H. Treatment of High-Strength Wastewater from Ammonium and Phosphate Ions with the Obtaining of Struvite. Chem. Chem. Technol. 2017, 11, 463-468. https://doi.org/10.23939/chcht11.04.463
https://doi.org/10.23939/chcht11.04.463
[6] Shmandiy, V.; Bezdeneznych, L.; Kharlamova, О.; Svjatenko, A.; Malovanyy, M.; Petrushka, K.; Polyuzhyn, I. Methods of Salt Content Stabilization in Circulating Water Supply Systems. Chem. Chem. Technol. 2017, 11, 242-246. https://doi.org/10.23939/chcht11.02.242
https://doi.org/10.23939/chcht11.02.242
[7] Pyshyev, S.; Miroshnichenko, D.; Malik, I.; Contreras, A.B.; Hassan, N.; El Rasoul, A.A. State of the Art in the Production of Charcoal: A Review. Chem. Chem. Technol. 2021, 15, 61-73. https://doi.org/10.23939/chcht15.01.061
https://doi.org/10.23939/chcht15.01.061
[8] Pstrowska, K.; Łużny, R.; Fałtynowicz, H.; Jaroszewska, K.; Postawa, K.; Pyshyev, S.; Witek-Krowiak, A. Unlocking Sustainability: A Comprehensive Review of up-Recycling Biomass Waste into Biochar for Environmental Solutions. Chem. Chem. Technol. 2024, 18, 211-231. https://doi.org/10.23939/chcht18.02.211
https://doi.org/10.23939/chcht18.02.211
[9] Bordun, І.; Vasylinych, T.; Malovanyy, M.; Sakalova, H.; Liubchak, L.; Luchyt, L. Study of Adsorption of Differently Charged Dyes by Carbon Adsorbents. Desal. Water Treat. 2023, 288, 151-158. http://doi.org/10.5004/dwt.2023.29332
https://doi.org/10.5004/dwt.2023.29332
[10] Malovanyy, M.; Nikiforov, V.; Kharlamova, O.; Synelnikov O. Production of Renewable Energy Resources via Complex Treatment of Cyanobacteria Biomass. Chem. Chem. Technol. 2016, 10, 251-254. https://doi.org/10.23939/chcht10.02.251
https://doi.org/10.23939/chcht10.02.251
[11] Tymchuk, I.; Malovanyy, M.;, Shkvirko, O.; Yatsukh, K. Sewage Sludge as a Component to Create a Substrate for Biological Reclamation. Ecol. Eng. Environ. Technol. 2021, 22, 229-237. https://doi.org/ 10.12912/27197050/137863
https://doi.org/10.12912/27197050/137863
[12] Malovanyy, M.; Moroz, O.; Popovich, V.; Kopiy, M.; Tymchuk, I.; Sereda, A.; Krusir, G.; Soloviy, C. The Perspective of Using the "Open Biological Conveyor" Method for Purifying Landfill Filtrates. Environ. Nanotechnol. Monit. Manage. 2021, 16, 100611. https://doi.org/10.1016/j.enmm.2021.100611
https://doi.org/10.1016/j.enmm.2021.100611
[13] Mokrousova, E., Dzyazko, Y., Volfkovich, Y., Nikolskaya, N. Hierarchical Structure of the Derma Affected by Chemical Treatment and Filling with Bentonite: Diagnostics with a Method of Standard Contact Porosimetry. In Nanophysics, Nanophotonics, Surface Studies, and Applications; Fesenko, O.; Yatsenko, L., Eds.; Springer, Cham., 2016; pp 277-290.
https://doi.org/10.1007/978-3-319-30737-4_23
[14] Karavayev,T.; Mokrousova,O.; Yazvinska, K.; Zhaldak, M.; Tkachuk,V. Expert Examination of Leather in International Trade: Ukrainian Experience. Leather and Footwear Journal 2023, 23, 93-106. https://doi.org/10.24264/lfj.23.2.3
https://doi.org/10.24264/lfj.23.2.3
[15] Nilson, L.t; Persson, P.O.; Rydén, L.; Darozhka, S.; Zaliauskiene, A. Cleaner Production Technologies and Tools for Resource Efficient Production; The Baltic University Press, 2007.
[16] Covington, A. The chemistry of tanning materials. In Conservation of Leather and Related Materials; Taylor and Francis, 2006.
[17] Marukhlenko, M.; Mokrousova, О.; Okhmat, O. New Tanning Agent with Montmorillonite for Leather Manufacturing. Solid State Phenomena 2017, 267, 52-57. https://doi.org/10.4028/www.scientific.net/SSP.267.52
https://doi.org/10.4028/www.scientific.net/SSP.267.52
[18] Mokrousova, O.; Danylkovych, A.; Palamar, V. Resourse-saving chrome tannage of leather with modified montmorillonite. In Resourse-saving technologies for the production of elastic leather materials; Baltija Publishing, 2020; рр 119-129.
[19] Kovtunenko, O.; Travinskaya, T.; Mokrousova, O. Thermal Properties of Anionic Polyurethane Composition for Leather Finishing. Materials Science (Medžiagotyra) 2016, 22, 394-399. https://doi.org/10.5755/j01.ms.22.3.10043
https://doi.org/10.5755/j01.ms.22.3.10043
[20] Pati, A.; Chaudhary, R.; Subramani, S. A Review on Management of Chrome-Tanned Leather Shavings: A Holistic Paradigm to Combat the Environmental Issues. Environ. Sci. Pollut. Res. 2014, 21, 11266-11282.
https://doi.org/10.1007/s11356-014-3055-9
[21] Parisi, M.; Nanni, A.; Colonna, M. Recycling of Chrome-Tanned Leather and Its Utilization as Polymeric Materials and in Polymer-Based Composites: A Review. Polymers 2021, 13, 429. https://doi.org/10.3390/ polym13030429
https://doi.org/10.3390/polym13030429
[22] Rigueto, C.V.T.; Rosseto, M.; Krein, D.D.C.; Ostwald, B.E.P.; Massuda, L.A.; Zanella, B.B.; Dettmer, A. Alternative Uses for Tannery Wastes: A Review of Environmental, Sustainability, and Science. J Leather Sci Eng 2020, 2, 5332. https://doi.org/10.1186/s42825-020-00034-z
https://doi.org/10.1186/s42825-020-00034-z
[23] Biškauskaitė, R.; Miškūnaitė, L.; Plavan, V.; Valeika, V. Hydrolysis of Used Leather and Application of Hydrolysates. Proc. Est. Acad. Sci. 2024, 73, 60-67. https://doi.org/10.3176/proc.2024.1.07
https://doi.org/10.3176/proc.2024.1.07
[24] Yang, J.E.; Shan, Z.H; Zhang, Y.W.; Chen, L.W. Stabilization and Cyclic Utilization of Chrome Leather Shavings. Environ Sci Pollut Res. 2019, 26, 4680-4689. https://doi.org/10.1007/s11356-018-3687-2
https://doi.org/10.1007/s11356-018-3687-2
[25] Savchuk, O.; Raksha, N.; Ostapchenko, L.; Mokrousova, О.; Andreyeva, Olga. Extraction and Characterization of Collagen Obtained from Collagen-Containing Wastes of the Leather Industry. Solid State Phenomena 2017, 267, 172-176. https://doi.org/10.4028/www.scientific.net/SSP.267.172
https://doi.org/10.4028/www.scientific.net/SSP.267.172
[26] Moktadir, Md.A.; Ren, J.; Zhou, J.; A Systematic Review on Tannery Sludge to Energy Route: Current Practices, Impacts, Strategies, and Future Directions. Sci. Total Environ. 2023, 901, 166244. https://doi.org/10.1016/j.scitotenv.2023.166244
https://doi.org/10.1016/j.scitotenv.2023.166244
[27] Savchuk, O.; Rebrikova, P.; Vovk, T.; Raksha, N.; Ostapchenko, L.; Mokrousova, O. Use of Waste from the Leather Industry for the Production of Biotechnological Products Based on Collagen. IOP Conf. Ser.: Mater. Sci. Eng. 2019, 500, 012020. https://doi.org/10.1088/1757-899X/500/1/012020
https://doi.org/10.1088/1757-899X/500/1/012020
[28] Ranskiy, A.; Gordienko, О.; Korinenko, B.; Ishchenko, V.; Sakalova, H.; Vasylinych, T.; Malovanyy, M. Pyrolysis Processing of Polymer Waste Components of Electronic Products. Chem. Chem. Technol. 2024, 18, 103-108. https://doi.org/10.23939/chcht18.01.103
https://doi.org/10.23939/chcht18.01.103
[29] Li, Y.; Guo, R.; Lu, W.; Zhu, D. Research Progress on Resource Utilization of Leather Solid Waste. J Leather Sci Eng 2019, 1, 6. https://doi.org/10.1186/s42825-019-0008-6
https://doi.org/10.1186/s42825-019-0008-6
[30] Ma, J.Z.; Lv, B.; Yan, M. Preparation of Emulsifier for Ethanol-Diesel Fuel from Tannery Waste Oil. Petroleum Processing and Petrochemicals 2011, 42, 73-77.
[31] Tang, W.L.; Zhao, H. Industrial Biotechnology: Tools and Applications. Biotechnol. J. 2009, 4, 1725-1739. https://doi.org/10.1002/biot.200900127
https://doi.org/10.1002/biot.200900127
[32] Kirtay, E. Recent Advance in Production of Hydrogen from Biomass. Energy Convers. Manage. 2011, 52, 1778-1789. https://doi.org/10.1016/j.enconman.2010.11.010
https://doi.org/10.1016/j.enconman.2010.11.010
[33] Pavlas, M.; Stehlík, P.; Oral, J.; Klemeš, J.; Kim, J.K.; Firth, B. Heat Integrated Heat Pumping for Biomass Gasification Processing. Appl. Therm. Eng. 2010, 30, 120-128. https://hal.science/hal-00589453
https://doi.org/10.1016/j.applthermaleng.2009.03.013
[34] Malovanyy, M.; Nykyforov, V.; Kharlamova, O.; Synelnikov, O. Mathematical Model of the Process of Synthesis of Biogas from Blue-Green Algae. Ecological safety 2015, 1, 58-63.
[35] Malovanyy, M.; Nykyforov, V.; Kharlamova, O.; Synelnikov, O.; Dereyko. K.; Reduction of the Environmental Threat from Uncontrolled Development of Cyanobacteria in Waters of Dnipro Reservoirs. Environmental problems 2016, 1, 61-64.
[36] Korol, R.; Sakalova, H. Methanogenesis of Waste in Technical Systems as an Energy Conservation Factor. Personality and Environmental Issues 2022, 2, 22-25. https://doi.org/10.31652/2786-6033-2022-1(2)-22-25
https://doi.org/10.31652/2786-6033-2022-1(2)-22-25
[37] Pavliukh, L.; Boichenkо, S.; Onopa, V.; Tykhenko,O.; Topilnytskyy, P.; Romanchuk, V.; Samsin, I. Resource Potential for Biogas Production in Ukraine. Chem. Chem. Technol. 2019, 13, 101-106. https://doi.org/10.23939/chcht13.01.101
https://doi.org/10.23939/chcht13.01.101
[38] Dutta, S.; Saravanabhupathy, S.; Anusha Rajak, R. C.; Banerjee R.; Dikshit P. K.; Padigala, C. T.; Das, A.K.; Kim B.S. Recent Developments in Lignocellulosic Biofuel Production with Nanotechnological Intervention: An Emphasis on Ethanol. Catalysts 2023, 13, 1439. https://doi.org/10.3390/catal13111439
https://doi.org/10.3390/catal13111439
[39] Kręgiel, D.; Pawlikowska, E.; Antolak, H. Non-Conventional Yeasts in Fermentation Processes: Potentialities and Limitations. In Old Yeast - New Question; Lukas, C.; Pais, C., Eds.; IntechOpen, 2017; pp 87-116.
https://doi.org/10.5772/intechopen.70404
[40] Ribun, V.; Kurta, S.; Gromovy, T.; Khatsevich, O. Improving the Technology Synthesis and Properties of Biodiesel. Physics and Chemistry of Solid State 2018, 19, 258-269. https://doi.org/10.15330/pcss.19.3.258-269
https://doi.org/10.15330/pcss.19.3.258-269
[41] Alibardi, L.; Cossu, R.; Pre-Treatment of Tannery Sludge for Sustainable Landfilling. Waste Manage. 2016, 52, 202-211. https://doi.org/10.1016/j.wasman.2016.04.008
https://doi.org/10.1016/j.wasman.2016.04.008
[42] Dixit, S.; Yadav, A.; Dwivedi, PD.; Das, M. Toxic Hazards of Leather Industry and Technologies to Combat Threat: A Review. J. Clean. Prod. 2015, 87, 39-49. https://doi.org/10.1016/j.jclepro.2014.10.017
https://doi.org/10.1016/j.jclepro.2014.10.017
[43] Chojnacka, K.; Skrzypczak, D.; Mikula, K.; Witek-Krowiak, A.; Izydorczyk, G.; Kuligowski, K.; Bandrów, P.; Kułażyński, M. Progress in Sustainable Technologies of Leather Wastes Valorization as Solutions for the Circular Economy. J. Clean. Prod. 2021, 313, 127902. https://doi.org/10.1016/j.jclepro.2021.127902
https://doi.org/10.1016/j.jclepro.2021.127902
[44] Simioni, T.; Agustini, C.B.; Dettmer, A.; Gutterres, M. Nutrient Balance for Anaerobic Co-Digestion of tannery Wastes: Energy Efficiency, Waste Treatment and Cost-Saving. Bioresour. Technol. 2020, 308, 123255. https://doi.org/10.1016/j.biortech.2020.123255
https://doi.org/10.1016/j.biortech.2020.123255
[45] Xu, R.; Zhang, K.; Liu, P.; Khan, A.; Xiong, J.; Tian, F.; Li, X. A Critical Review on the Interaction of Substrate Nutrient Balance and Microbial Community Structure and Function in Anaerobic Co-Digestion. Bioresour. Technol. 2018, 247, 1119-1127. https://doi.org/10.1016/j. biortech.2017.09.095
https://doi.org/10.1016/j.biortech.2017.09.095
[46] Bayrakdar, A. Anaerobic Co-Digestion of Tannery Solid Wastes: A Comparison of Single and Two-Phase Anaerobic Digestion. Waste Biomass Valorization 2020, 11, 1727-1735. https://doi.org/10.1007/s12649-019-00902-8
https://doi.org/10.1007/s12649-019-00902-8
[47] Zupančič, G.D.; Jemec, A. Anaerobic Digestion of Tannery Waste: Semi Continuous and Anaerobic Sequencing Batch Reactor Processes. Bioresour Technol. 2010, 101, 26-33. https://doi.org/10.1016/jbiortech200907028
https://doi.org/10.1016/j.biortech.2009.07.028
[48] Li, Y.; Park, SY.; Zhu, J. Solid-State Anaerobic Digestion for Methane Production from Organic Waste. Renewable Sustainable Energy Rev. 2010, 15, 821-826. https://doi.org/10.1016/ jrser201007042
https://doi.org/10.1016/j.rser.2010.07.042
[49] Agustini, C.B.; Da Fontoura, J.T.; Mella, B.; Gutterres, M.; Evaluating Co-Substrates to Supplement Biogas Production from Tannery Solid Waste Treatment- Cattle Hair, Microalgae Biomass, and Silicone. Biofuels, Bioprod. Biorefin. 2018, 12, 1095-1102. https://doi.org/10.1002/bbb.1929
https://doi.org/10.1002/bbb.1929
[50] Kameswari, K.S.B.; Kalyanaraman, C.; Thanasekaran, K. Effect of Ozonation and Ultrasonication Pretreatment Processes on Co-Digestion of Tannery Solid Wastes. Clean Technologies and Environmental Policy 2011, 13, 517-525.
https://doi.org/10.1007/s10098-010-0334-0
[51] Kameswari, SBK.; Kalyanaraman, C.; Porselvam, S.; Thanasekaran, K. Enhancement of Biogas Generation by Addition of Lipase in the Co-Digestion of Tannery Solid Wastes. Clean Soil Air Water 2011, 39, 781-786. https://doi.org/10.1002/clen.201000408
https://doi.org/10.1002/clen.201000408
[52] Golub, N.B.; Shinkarchuk, M.B.; Shynkarchuk, A.V.; Xinhua, Zh. Y.; Kozlovets O. A. Vulnerabilities in the Production of Biogas from the Fat-Containing Tannery Waste. Innovative Biosyst. Bioeng. 2019, 3, 253-260. https://doi.org/10.20535/ibb.2019.3.4.185425
https://doi.org/10.20535/ibb.2019.3.4.185425
[53] Golub, N.; Shinkarchuk, М.; Kozlovets, О.; Morgun, M.; Lakhneko, О.; Stepanenko, А.; Borisjuk, М. Determination of Biogas Producers in Antibiotic-Containing Sewage. Water Air Soil Pollut. 2020, 231, 445. https://doi.org/10.1007/s11270-020-04805-6
https://doi.org/10.1007/s11270-020-04805-6
[54] Abbas, N.; Jamil, N.; Deeba, F. Potential of Biogas in Waste Activated Tannery Sludge by Anaerobic Co-Digestion. Asian J. Chem. 2015, 27, 697-700. https://doi.org/10.14233/ajchem.2015.17773
https://doi.org/10.14233/ajchem.2015.17773
[55] Agustini, C.; da Costa, M.; Gutterres, M. Biogas Production from Tannery Solid Wastes - Scale-Up and Cost Saving Analysis. J. Clean. Prod. 2018, 187, 158-164. https://doi.org/10.1016/j.jclepro.2018.03.185
https://doi.org/10.1016/j.jclepro.2018.03.185
[56] İşler, A.; Sundu, S.; Tüter, M.; Karaosmanoğlu, F. Transesterification Reaction of the Fat Originated from Solid Waste of the Leather Industry. Waste Manage. 2010, 30, 2631-2635. https://doi.org/10.1016/j.wasman.2010.06.005
https://doi.org/10.1016/j.wasman.2010.06.005
[57] Ramos, L.; Fernandes, R.; Crispim, A.; Ramalho, E.; Caetano, N.; Silva, P. Biodiesel Production from Leather Industry Wastes. Proceedings of the 10th International Chemical and Biological Engineering Conference 2008, 6, 381-390.
[58] Adewale, P.; Dumont, MJ.; Ngadi, M. Recent Trends of Biodiesel Production from Animal Fat Wastes and Associated Production Techniques. Renew Sust. Energ. 2015, 45, 574-588. https://doi.org/10.1016/j.rser.2015.02.039
https://doi.org/10.1016/j.rser.2015.02.039
[59] Kolomazník, K.; Pecha, J.; Barinova, M.; Šánek, L.; Furst, T.; Janacova, D. Potential of Tannery Fleshings in Biodiesel Production an Mathematical Modeling of the Fleshing Pre-Treatment. International Journal of Mathematics and Computers in Simulation 2012, 6, 456-464.
[60] Šánek, L.; Pecha, J.; Kolomazník, K.; Bařinová, M. Biodiesel Production from Tannery Fleshings: Feedstock Pretreatment and Process Modeling. Fuel 2015, 148, 16-24. https://doi.org/10.1016/j.fuel.2015.01.084
https://doi.org/10.1016/j.fuel.2015.01.084
[61] Altun, S.; Yasar, F. Biodiesel Production from Leather Industry Wastes as an Alternative Feedstock and its Use in Diesel Engines. Energy Explor. Exploit. 2013, 31, 759-770. https://doi.org/10.1260/0144-5987.31.5.759
https://doi.org/10.1260/0144-5987.31.5.759
[62] Booramuthy, V.K.; Kasimani, R.; Pandian, S. Biodiesel Production from Tannery Waste using a Nano Catalyst (Ferric-Manganese Doped Sulphated Zirconia). Energy Sources Part A 2019, 44, 1092-1104. https://doi.org/10.1080/15567036.2019.1639849
https://doi.org/10.1080/15567036.2019.1639849
[63] Souza, E.; Silva, L. Energy Recovery from Tannery Sludge Wastewaters through Photocatalytic Hydrogen Production. J. Environ. Chem. Eng. 2016, 4, 2114-2120. https://doi.org/10.1016/j.jece.2016.03.040
https://doi.org/10.1016/j.jece.2016.03.040
[64] Kumar, V.; Thakur, I.S. Extraction of Lipids and Production of Biodiesel from Secondary Tannery Sludge by in situ Transesterification. Bioresour. Technol. Rep. 2020, 11, 100446. https://doi.org/10.1016/j.biteb.2020.100446
https://doi.org/10.1016/j.biteb.2020.100446
[65] Boocock, D.G.B.; Konar, S.K.; Leung, A.; Ly, L.D. Fuels and Chemicals from Sewage Sludge: 1. The Solvent Extraction and Composition of a Lipid from a Raw Sewage Sludge. Fuel 1992, 71, 1283-1289. https://doi.org/10.1016/0016-2361(92)90055-S
https://doi.org/10.1016/0016-2361(92)90055-S
[66] Li, Q.; Du, W.; Liu, D.; Perspectives of Microbial Oils for Biodiesel Production. Appl. Microbiol. Biotechnol. 2008, 80, 749-756. https://doi.org/10.1007/s00253-008-1625-9
https://doi.org/10.1007/s00253-008-1625-9
[67] Dang, X.; Yang, M.; Zhang, B.; Chen, H.; Wang, Y.; Recovery and Utilization of Collagen Protein Powder Extracted from Chromium Leather Scrap Waste. Environ. Sci. Pollut. Res. 2019, 26, 7277-7283. https://doi.org/10.1007/s11356-019-04226-x
https://doi.org/10.1007/s11356-019-04226-x