Провідні мембрани, отримані з фторорганосилоксанів гребеневого типу та фторорганічних солей
| Attachment | Size |
|---|---|
| 1.54 MB |
Keywords:
[1] Muldoon, J.; Bucur, C.B.; Boaretto, N.; Gregory, Th.; di Noto, V. Polymers: Opening Doors to Future Batteries. Polym. Rev. 2015, 58, 208–246. https://doi.org/10.1080/15583724.2015.1011966
[2] Sun, Ch.; Liu, J.; Gong, Yu.; Wilkinson, D.P.; Zhang, J. Recent Advances in All-Solid-State Rechargeable Lithium Batteries. Nano Energy 2017, 33, 363–386. https://doi.org/10.1016/j.nanoen.2017.01.028
[3] Goodenough, J.B.; Park, K-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. https://doi.org/10.1021/ja3091438
[4] Armand, M.B.; Bruce, P.G.; Forsyth, M.; Scrosati, B.; Wieczorek, W. Polymer electrolytes. In Energy Materials; Bruce, D.W.; O'Hare, D.; Walton, R.I., Eds.; John Wiley & Sons, Ltd., 2011; pp. 1–27. https://doi.org/10.1002/9780470977798.ch1
[5] Grünebaum, M.; Hiller, M.; Jankowsky, S.; Pohl, S.E.; Schürmann, Th.; Vettikuzha, P.; Gentschev, A-Ch.; Stolina, R.; Müller, R.; Wiemhöfer, H-D. Synthesis and Electrochemistry of Polymer-Based Electrolytes or Lithium Batteries. Prog. Solid State Chem. 2014, 42, 85–105. https://doi.org/10.1016/j.progsolidstchem.2014.04.004
[6] Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All Solid-State Polymer Electrolytes for High-Performance Lithium-Ion Batteries. Energy Storage Mater. 2016, 15, 139–164. https://doi.org/10.1016/j.ensm.2016.07.003
[7] Kim, D-G.; Shim, J.; Lee, J.H.; Kwon, S-J.; Baik, J-H.; Lee, J-C. Preparation of Solid-State Composite Electrolytes Based on Organic/Inorganic Hybrid Star-Shaped Polymer and PEG-Functionalized POSS for All-Solid-State Lithium Battery Applications. Polymer 2013, 54, 5812–5820. https://doi.org/10.1016/j.polymer.2013.08.049
[8] Ben Youcef, H.; Garcia-Calvo, O.; Lago, N.; Devaraj, Sh.; Armand, M. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries. Electrochim. Acta 2015, 220, 587–594. https://doi.org/10.1016/j.electacta.2016.10.122
[9] Liu, T.-M.; Saikia, D.; Ho, S.-Y.; Chen, M.-Ch.; Kao, H.-M. High Ion-Conducting Solid Polymer Electrolytes Based on Blending Hybrids Derived from Monoamine and Diamine Polyethers for Lithium Solid-State Batteries. RSC Adv. 2017, 7, 20373–20383. https://doi.org/10.1039/C7RA01542A
[10] Boaretto, N.; Joost, Ch.; Seyfried, M.; Vezzù, V.K.; Di Noto, Di. Conductivity and Properties of Polysiloxane-Polyether Cluster-LiTFSI Networks as Hybrid Polymer Electrolytes. J. Power Sources 2016, 325, 427–437. https://doi.org/10.1016/j.jpowsour.2016.06.034
[11] Mukbaniani, O.; Zaikov, G.; Tatrishvili, T. Organosilicon Copolymers with Monocyclic Fragments in the Main Dimethylsiloxane Backbone. A Review. Oxidation Communications 2006, 29, 776–792.
[12] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modelling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2023, 16, 499–506. https://doi.org/10.23939/chcht16.04.499
[13] Mukbaniani, O.; Zaikov, G.; Tatrishvili, T.; Titvinidze, G.; Phatsatsia, S. Synthesis of New Methylsiloxane Oligomers with Pendant Trialkoxysilylethyl Groups for Preparation of Silicon Hard Coatings. Macromol. Symp. 2007, 247, 393–404. https://doi.org/10.1002/masy. 200750146
[14] Röchow, E.T.; Coeler, M.; Pospiech, D.; Kobsch, O.; Mechtaeva, E.; Vogel, R.; Voit, B.; Nikolowski, K.; Wolter, M. In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems. Polymers 2020, 12, 1707. https://doi.org/10.3390/polym12081707
[15] Socrates, G. Socrates Infrared and Raman characteristic group frequencies: tables and charts; John Wiley and Sons, 2001.
[16] Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley and Sons, 2004. https://doi.org/10.1002/0470011149
[17] Bursch, M.; Gasevic, Th.; Stückrath, Ju.B.; Grimme, S. Comprehensive Benchmark Study on the Calculation of 29Si NMR Chemical Shifts. Inorg. Chem. 2021, 60, 272–285. https://doi.org/10.1021/acs.inorgchem.0c02907
[18] Gunawan, R.; Nandiyanto, A.B.D. How to Read and Interpret 1H-NMR and 13C-NMR Spectrums. Indones. J. Sci. Technol. 2021, 6, 267–298.
[19] Mukbaniani, O.; Tatrishvili, T.; Mukbaniani, N. Comb-Type Methylsiloxane Copolymers with Diorganosilylene Fragments as a Lateral Group. J. Appl. Polym. 2007, 104, 2161–2167. https://doi.org/10.1002/app.24474
[20] Lin, C.; Kao, H.; Wu, R.; Kuo, P. Multinuclear Solid-State NMR, DSC, and Conductivity Studies of Solid Polymer Electrolytes Based on Polyurethane/Poly(dimethylsiloxane) Segmented Copolymers. Macromolecules 2002, 35, 3083–3096. https://doi.org/10.1021/ma012012q
[21] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758–765. https://doi.org/10.23939/chcht17.04.758
[22] Tatrshvili, T.; Mukbaniani, O.; Kvinikadze, N.; Bukia, T.; Pirtskheliani, N.; Chikhladze, Sh. Wood Flour Composites: Obtaining and Research. Chem. Chem. Technol. 2024, 18, 567–579, https://doi.org/10.23939/chcht18.04.567
[23] Tatrshvili, T.; Mukbaniani, O.; Kvinikadze, N.; Chikhladze, Sh.; Bukia, T.; Petriashvili, G.;L Pirtskheliani, N.; Makharadze, T. Novel Composites Based on a Natural Raw Material and Silylated Polystyrene. Chem. Chem. Technol. 2024, 18, 580–591. https://doi.org/10.23939/chcht18.04.580
[24] Petriashvili, G.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Chubinidze, M. Light-Stimulated Lowering of Glucose Concentration in a Dextrose Solution Mediated by Merocyanine Molecules. MatTech 2023, 57, 119–124. https://doi.org/10.17222/mit.2022.639
[25] Mukbaniani, O.; Aneli, J.; Tatrishvili, T. Biocomposites- Environmental and Biomedical Applications; Apple Academic Press, 2023.
[26] Petriashvili, G.; Sulaberidze, T.; Tavkhelidze, D.; Janikashvili, M.; Ponjavidze, N.; Chanishvili, A.; Chubinidze, K.; Tatrishvili, T.; Makharadze, T.; Kalandia, E.; et al. Cholesteric Liquid Crystal Mirror-Based Smart Window Controlled with Ambient Temperature. Chem. Chem. Technol. 2024, 18, 401–408. https://doi.org/10.23939/chcht18.03.401
[27] Bukia, T.; Utiashvili, M.; Tsiskarishvili, M.; Jalalishvili, S.; Gogolashvili, A.; Tatrishvili, T.; Petriashvili, G. Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3h-Indolenine. Chem. Chem. Technol. 2023, 17, 549–556. https://doi.org/10.23939/chcht17.03.549
[28] Mukbaniani, O.; Tatrishvili, T.; Titvinidze, G.; Mukbaniani, N. Formation of New Thermoreactive Polysiloxanes. J. Appl. Polym. Sci. 2007, 104, 2168–2173. https://doi.org/10.1002/app.24740
[29] Mukbaniani, O.; Zaikov, G.; Tatrishvili, T.; Titvinidze, G.; Mukbaniani, N. Methylsiloxane Oligomers with Oxyalkyl Fragments in the Side Chain. Macromol. Symp. 2007, 247, 364–370. https://doi.org/10.1002/masy.200750142
[30] Rossi, N.A.; West, R. Silicon-Containing Liquid Polymer Electrolytes for Application in Lithium-Ion Batteries. Polym. Int. 2009, 58, 267–272. https://doi.org/10.1002/pi.2523
[31] Snyder, J.F.; Ratner, M.A.; Shriver, D.F. Ion Conductivity of Comb Polysiloxane Polyelectrolytes Containing Oligoether and Perfluoroether Sidechains. J. Electrochem. Soc. 2003, 150, A1090–A1094. https://doi.org/10.1149/1.1589759