Conductive Membranes Obtained From Comb-Type Fluoroorganosiloxanes and Fluoroorganic Salts

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Tamara Tatrishvili1,2, Tinatini Bukia2,3, Nikolozi Kvinikadze1,2, Nana Pirtskheliani2,4, Tamar Makharadze2,3
Affiliation: 
1 Ivane Javakhishvili' Tbilisi State University, Department of Macromolecular Chemistry. 1 I. Chavchavadze Ave., Tbilisi 0179, Georgia 2 Institute of Macromolecular Chemistry and Polymeric Materials, Ivane Javakhishvili Tbilisi State University, 13 I. Chavchavadze Ave, Tbilisi 0179, Georgia 3 Vladimir Chavchanidze Institute of Cybernetics of the Georgian Technical University, 5 Z. Andjzaparidze St., Tbilisi 0186, Georgia 4 Sokhumi State University, Faculty of Natural Sciences, Mathematics, Technologies and Pharmacy, 61 Politkovskaya St., Tbilisi 0186, Georgia tamar.tatrishvili@tsu.ge
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf1.54 MB
Abstract: 
In this study, the hydrosilylation reaction of tetrahydrotetramethylcyclotetrasiloxane with allyl trifluoroacetate proceeded in the presence of catalysts (platinum, hydrochloric acid, Karstedt's catalysts, and Pt/C (10%) at 323K was investigated. The expected D4R adduct was obtained. The D4R sample was analyzed by FTIR, 1H, 13C, and 29Si NMR spectroscopy. A polymerization reaction of D4R-type fluoroorganocyclotetrasiloxane was carried out in the presence of a tetramethylammonium fluoride catalyst. The resultant reaction produced comb-type fluoro-organosiloxanes. Sol-gel reactions of fluoro organosiloxanes doped with lithium trifluoromethylsulfonate (triflate) or lithium bis(trifluoromethanesulfonyl)imide and tetraethoxysilane have been the subject of study, and solid polymer electrolyte membranes have been obtained. The ionic conductivities of these membranes have been determined using the technique of electrical impedance spectroscopy. It has been found that the electric conductivity of the polymer electrolyte membranes at room temperature changes in the range from 7.8x10-7 to 3.2x10-6 S/cm. This compound is an interesting product because, in addition to ester groups, it also contains fluorine host donor groups and, via sol-gel reactions, directly gives us thin films.
References: 

[1] Muldoon, J.; Bucur, C.B.; Boaretto, N.; Gregory, Th.; di Noto, V. Polymers: Opening Doors to Future Batteries. Polym. Rev. 2015, 58, 208–246. https://doi.org/10.1080/15583724.2015.1011966
[2] Sun, Ch.; Liu, J.; Gong, Yu.; Wilkinson, D.P.; Zhang, J. Recent Advances in All-Solid-State Rechargeable Lithium Batteries. Nano Energy 2017, 33, 363–386. https://doi.org/10.1016/j.nanoen.2017.01.028
[3] Goodenough, J.B.; Park, K-S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. https://doi.org/10.1021/ja3091438
[4] Armand, M.B.; Bruce, P.G.; Forsyth, M.; Scrosati, B.; Wieczorek, W. Polymer electrolytes. In Energy Materials; Bruce, D.W.; O'Hare, D.; Walton, R.I., Eds.; John Wiley & Sons, Ltd., 2011; pp. 1–27. https://doi.org/10.1002/9780470977798.ch1
[5] Grünebaum, M.; Hiller, M.; Jankowsky, S.; Pohl, S.E.; Schürmann, Th.; Vettikuzha, P.; Gentschev, A-Ch.; Stolina, R.; Müller, R.; Wiemhöfer, H-D. Synthesis and Electrochemistry of Polymer-Based Electrolytes or Lithium Batteries. Prog. Solid State Chem. 2014, 42, 85–105. https://doi.org/10.1016/j.progsolidstchem.2014.04.004
[6] Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All Solid-State Polymer Electrolytes for High-Performance Lithium-Ion Batteries. Energy Storage Mater. 2016, 15, 139–164. https://doi.org/10.1016/j.ensm.2016.07.003
[7] Kim, D-G.; Shim, J.; Lee, J.H.; Kwon, S-J.; Baik, J-H.; Lee, J-C. Preparation of Solid-State Composite Electrolytes Based on Organic/Inorganic Hybrid Star-Shaped Polymer and PEG-Functionalized POSS for All-Solid-State Lithium Battery Applications. Polymer 2013, 54, 5812–5820. https://doi.org/10.1016/j.polymer.2013.08.049
[8] Ben Youcef, H.; Garcia-Calvo, O.; Lago, N.; Devaraj, Sh.; Armand, M. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries. Electrochim. Acta 2015, 220, 587–594. https://doi.org/10.1016/j.electacta.2016.10.122
[9] Liu, T.-M.; Saikia, D.; Ho, S.-Y.; Chen, M.-Ch.; Kao, H.-M. High Ion-Conducting Solid Polymer Electrolytes Based on Blending Hybrids Derived from Monoamine and Diamine Polyethers for Lithium Solid-State Batteries. RSC Adv. 2017, 7, 20373–20383. https://doi.org/10.1039/C7RA01542A
[10] Boaretto, N.; Joost, Ch.; Seyfried, M.; Vezzù, V.K.; Di Noto, Di. Conductivity and Properties of Polysiloxane-Polyether Cluster-LiTFSI Networks as Hybrid Polymer Electrolytes. J. Power Sources 2016, 325, 427–437. https://doi.org/10.1016/j.jpowsour.2016.06.034
[11] Mukbaniani, O.; Zaikov, G.; Tatrishvili, T. Organosilicon Copolymers with Monocyclic Fragments in the Main Dimethylsiloxane Backbone. A Review. Oxidation Communications 2006, 29, 776–792.
[12] Mukbaniani, O.; Tatrishvili, T.; Pachulia, Z.; Londaridze, L.; Pirtskheliani, N. Quantum-Chemical Modelling of Hydrosilylation Reaction of Triethoxysilane to Divinylbenzene. Chem. Chem. Technol. 2023, 16, 499–506. https://doi.org/10.23939/chcht16.04.499
[13] Mukbaniani, O.; Zaikov, G.; Tatrishvili, T.; Titvinidze, G.; Phatsatsia, S. Synthesis of New Methylsiloxane Oligomers with Pendant Trialkoxysilylethyl Groups for Preparation of Silicon Hard Coatings. Macromol. Symp. 2007, 247, 393–404. https://doi.org/10.1002/masy. 200750146
[14] Röchow, E.T.; Coeler, M.; Pospiech, D.; Kobsch, O.; Mechtaeva, E.; Vogel, R.; Voit, B.; Nikolowski, K.; Wolter, M. In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems. Polymers 2020, 12, 1707. https://doi.org/10.3390/polym12081707
[15] Socrates, G. Socrates Infrared and Raman characteristic group frequencies: tables and charts; John Wiley and Sons, 2001.
[16] Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley and Sons, 2004. https://doi.org/10.1002/0470011149
[17] Bursch, M.; Gasevic, Th.; Stückrath, Ju.B.; Grimme, S. Comprehensive Benchmark Study on the Calculation of 29Si NMR Chemical Shifts. Inorg. Chem. 2021, 60, 272–285. https://doi.org/10.1021/acs.inorgchem.0c02907
[18] Gunawan, R.; Nandiyanto, A.B.D. How to Read and Interpret 1H-NMR and 13C-NMR Spectrums. Indones. J. Sci. Technol. 2021, 6, 267–298.
[19] Mukbaniani, O.; Tatrishvili, T.; Mukbaniani, N. Comb-Type Methylsiloxane Copolymers with Diorganosilylene Fragments as a Lateral Group. J. Appl. Polym. 2007, 104, 2161–2167. https://doi.org/10.1002/app.24474
[20] Lin, C.; Kao, H.; Wu, R.; Kuo, P. Multinuclear Solid-State NMR, DSC, and Conductivity Studies of Solid Polymer Electrolytes Based on Polyurethane/Poly(dimethylsiloxane) Segmented Copolymers. Macromolecules 2002, 35, 3083–3096. https://doi.org/10.1021/ma012012q
[21] Petriashvili, G.; Chanishvili, A.; Ponjavidze, N.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Makharadze, T. Crystal Smectic G Phase Retarder for the Real-Time Spatial-Temporal Modulation of Optical Information. Chem. Chem. Technol. 2023, 17, 758–765. https://doi.org/10.23939/chcht17.04.758
[22] Tatrshvili, T.; Mukbaniani, O.; Kvinikadze, N.; Bukia, T.; Pirtskheliani, N.; Chikhladze, Sh. Wood Flour Composites: Obtaining and Research. Chem. Chem. Technol. 2024, 18, 567–579, https://doi.org/10.23939/chcht18.04.567
[23] Tatrshvili, T.; Mukbaniani, O.; Kvinikadze, N.; Chikhladze, Sh.; Bukia, T.; Petriashvili, G.;L Pirtskheliani, N.; Makharadze, T. Novel Composites Based on a Natural Raw Material and Silylated Polystyrene. Chem. Chem. Technol. 2024, 18, 580–591. https://doi.org/10.23939/chcht18.04.580
[24] Petriashvili, G.; Chubinidze, K.; Tatrishvili, T.; Kalandia, E.; Petriashvili, A.; Chubinidze, M. Light-Stimulated Lowering of Glucose Concentration in a Dextrose Solution Mediated by Merocyanine Molecules. MatTech 2023, 57, 119–124. https://doi.org/10.17222/mit.2022.639
[25] Mukbaniani, O.; Aneli, J.; Tatrishvili, T. Biocomposites- Environmental and Biomedical Applications; Apple Academic Press, 2023.
[26] Petriashvili, G.; Sulaberidze, T.; Tavkhelidze, D.; Janikashvili, M.; Ponjavidze, N.; Chanishvili, A.; Chubinidze, K.; Tatrishvili, T.; Makharadze, T.; Kalandia, E.; et al. Cholesteric Liquid Crystal Mirror-Based Smart Window Controlled with Ambient Temperature. Chem. Chem. Technol. 2024, 18, 401–408. https://doi.org/10.23939/chcht18.03.401
[27] Bukia, T.; Utiashvili, M.; Tsiskarishvili, M.; Jalalishvili, S.; Gogolashvili, A.; Tatrishvili, T.; Petriashvili, G. Synthesis of Some Azo Dyes Based on 2,3,3-Trimethyl-3h-Indolenine. Chem. Chem. Technol. 2023, 17, 549–556. https://doi.org/10.23939/chcht17.03.549
[28] Mukbaniani, O.; Tatrishvili, T.; Titvinidze, G.; Mukbaniani, N. Formation of New Thermoreactive Polysiloxanes. J. Appl. Polym. Sci. 2007, 104, 2168–2173. https://doi.org/10.1002/app.24740
[29] Mukbaniani, O.; Zaikov, G.; Tatrishvili, T.; Titvinidze, G.; Mukbaniani, N. Methylsiloxane Oligomers with Oxyalkyl Fragments in the Side Chain. Macromol. Symp. 2007, 247, 364–370. https://doi.org/10.1002/masy.200750142
[30] Rossi, N.A.; West, R. Silicon-Containing Liquid Polymer Electrolytes for Application in Lithium-Ion Batteries. Polym. Int. 2009, 58, 267–272. https://doi.org/10.1002/pi.2523
[31] Snyder, J.F.; Ratner, M.A.; Shriver, D.F. Ion Conductivity of Comb Polysiloxane Polyelectrolytes Containing Oligoether and Perfluoroether Sidechains. J. Electrochem. Soc. 2003, 150, A1090–A1094. https://doi.org/10.1149/1.1589759