Огляд методів модифікування дорожніх бітумів. Частина 2 – хімічне модифікування
Attachment | Size |
---|---|
![]() | 523.62 KB |
Keywords:
[1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. https://doi.org/10.3390/app9040742
[2] Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Bratychak, M. Polymer Modified Bitumen. Chem. Chem. Technol. 2016, 10, 631–636. https://doi.org/10.23939/chcht10.04si.631
[3] Cuadri, A. A.; Partal, P.; Navarro, F. J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel 2011, 90, 2294–2300. https://doi.org/10.1016/j.fuel.2011.02.035
[4] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688–700. https://doi.org/10.23939/chcht17.03.688
[5] Gunka, V., Astakhova, O., Hrynchuk, Y., Sidun, I., Reutskyy, V., Mirchuk, I., Poliak, O. A Review of Road Bitumen Modification Methods. Part 1 - Physical Modification. Chem. Chem. Technol. 2024, 18, 295–304. https://doi.org/10.23939/chcht18.02.295
[6] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438–442. https://doi.org/10.23939/chcht15.03.438
[7] Zhu, J.; Birgisson, B.; Kringos, N. Polymer Modification of Bitumen: Advances and Challenges. Eur. Polym. J. 2014, 54, 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005
[8] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54–62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
[9] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M .; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
[10] Mousavi, M.; Kabir, S. F.; Fini, E. H. Effects of Sulfur Phase Transition on Moisture-Induced Damages in Bitumen Colloidal Structure. J. Environ. Chem. Eng. 2022, 107, 109–117. https://doi.org/10.1016/j.jiec.2021.11.040
[11] Nguyen, T. T.; Tran, N. H.; Kien Bui, N.; Vu, T. T., Pham, H. K.; Bui, X. C. The Investigation on the Effects of Sulphur on the Performance of Sulphur-Bitumen Binder. Road Mater. Pavement Des. 2022, 24, 795–818. https://doi.org/10.1080/14680629.2022.2049351
[12] Sakib, N.; Bhasin, A.; Islam, M. K.; Khan, K.; Khan, M. I. A Review of the Evolution of Technologies to Use Sulphur as a Pavement Construction Material. Int. J. Pavement Eng. 2021, 22, 392-403. https://doi.org/10.1080/10298436.2019.1612064
[13] Singh, M.; Jain, K.; Kahlon, S. S. Use of Sulphur as an Additive in Bitumen: A Review. Int. Res. J. Eng. Technol, 2020, 7, 36–43.
[14] Xie, S.; Yi, J.; Zhou, T.; Fini, E. H.; Feng, D. Phase Transition Process of Sulfur in Bitumen and its Effect on Rheological Properties of Bitumen. Constr. Build. Mater. 2023, 364, 129914. https://doi.org/10.1016/j.conbuildmat.2022.129914
[15] Baldino, N.; Gabriele, D.; Lupi, F. R.; Rossi, C. O.; Caputo, P.; Falvo, T. Rheological Effects on Bitumen of Polyphosphoric Acid (PPA) Addition. Constr. Build. Mater. 2013, 40, 397–404. https://doi.org/10.1016/j.conbuildmat.2012.11.001
[16] Liu, S.; Zhou, S.; Peng, A. Evaluation of Polyphosphoric Acid on the Performance of Polymer Modified Asphalt Binders. J. Appl. Polym. Sci. 2020, 137, 48984. https://doi.org/10.1002/app.48984
[17] Kabir, S. F.; Mousavi, M.; Hung, A. M.; Fini, E. H. High-Sulfur Bitumen Amplifies the Effect of Polyphosphoric Acid. Fuel 2022, 314, 123128. https://doi.org/10.1016/j.fuel.2021.123128
[18] Masson, J. F. Brief Review of the Chemistry of Polyphosphoric Acid (PPA) and Bitumen. Energy Fuels 2008, 22, 2637–2640. https://doi.org/10.1021/ef800120x
[19] Özdemir, D. K. High and Low Temperature Rheological Characteristics of Linear Alkyl Benzene Sulfonic Acid Modified Bitumen. Constr. Build. Mater. 2021, 301, 124041. https://doi.org/10.1016/j.conbuildmat.2021.124041
[20] Ortega, F. J.; Navarro, F. J.; García-Morales, M. Dodecylbenzenesulfonic Acid as a Bitumen Modifier: A Novel Approach to Enhance Rheological Properties of Bitumen. Energy Fuels 2017, 1, 5003–5010. https://doi.org/10.1021/acs.energyfuels.7b00419
[21] Aldagari, S.; Hung, A. M.; Shariati, S.; Kabir, S. F.; Ranka, M.; Bird, R. C.; Fini, E. H. Enhanced Sustainability at the Bitumen-Aggregate Interface Using Organosilane Coating Technology. Constr. Build. Mater. 2022, 359, 129500. https://doi.org/10.1016/j.conbuildmat.2022.129500
[22] Mirzababaei, P.; Moghadas Nejad, F.; Naderi, K. Effect of Liquid Silane-Based Anti-Stripping Additives on Rheological Properties of Asphalt Binder and Hot Mix Asphalt Moisture Sensitivity. Road Mater. Pavement Des. 2020, 21, 570–585. https://doi.org/10.1080/14680629.2018.1507920
[23] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Chen, H. Effect of Silane Coupling Agent on Improving the Adhesive Properties between Asphalt Binder and Aggregates. Constr Build Mater. 2018, 169, 591–600. https://doi.org/10.1016/j.conbuildmat.2018.02.186
[24] Rossi, C. O.; Caputo, P.; Baldino, N.; Szerb, E. I.; Teltayev, B. Quantitative Evaluation of Organosilane-Based Adhesion Promoter Effect on Bitumen-Aggregate Bond by Contact Angle Test. Int. J. Adhes. Adhes. 2017, 72, 117–122. https://doi.org/10.1016/j.ijadhadh.2016.10.015
[25] Cuadri, A. A.; Partal, P.; Navarro, F. J.; García-Morales, M.; Gallegos, C. Influence of Processing Temperature on the Modification Route and Rheological Properties of Thiourea Dioxide-Modified Bitumen. Energy Fuels 2011, 25, 4055–4062. https://doi.org/10.1021/ef200801h
[26] Bagshaw, S. A.; Kemmitt, T.; Waterland, M.; Brooke, S. Effect of Blending Conditions on Nano-Clay Bitumen Nanocomposite Properties. Road Mater. Pavement Des. 2019, 20, 1735–1756. https://doi.org/10.1080/14680629.2018.1468802
[27] Bala, N.; Kamaruddin, I.; Napiah, M.; Sutanto, M. H. Polymer Nanocomposite-Modified Asphalt: Characterisation and Optimisation Using Response Surface Methodology. Arab. J. Sci. Eng. 2019, 44, 4233–4243. https://doi.org/10.1007/s13369-018-3377-x
[28] Dehouche, N.; Kaci, M.; Mouillet, V. The Effects of Mixing Rate on Morphology and Physical Properties of Bitumen/Organo-Modified Montmorillonite Nanocomposites. Constr. Build. Mater. 2016, 114, 76–86. https://doi.org/10.1016/j.conbuildmat.2016.03.151
[29] Günay, T.; Ahmedzade, P. Physical and Rheological Properties of nano-TiO2 and Nanocomposite Modified Bitumens. Constr. Build. Mater. 2020, 243, 118208. https://doi.org/10.1016/j.conbuildmat.2020.118208
[30] Gulzar, S.; Underwood, S. Use of Polymer Nanocomposites in Asphalt Binder Modification. In Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications; Ul Islam, Sh.; Butola, B. S., Eds.; Scrivener publishing, 2019; pp 405–431. https://doi.org/10.1002/9781119605843.ch14
[31] Kosma, V.; Hayrapetyan, S.; Diamanti, E.; Dhawale, A.; Giannelis, E. P. Bitumen Nanocomposites with Improved Performance. Constr. Build. Mater. 2018, 160, 30–38. https://doi.org/10.1016/j.conbuildmat.2017.11.024
[32] Mahali, I.; Sahoo, U. C. Rheological Characterization of Nanocomposite Modified Asphalt Binder. Int. J. Pavement Res. Technol. 2019, 12, 589–594. https://doi.org/10.1007/s42947-019-0070-8
[33] Mamuye, Y.; Liao, M. C.; Do, N. D. Nano-Al2O3 Composite on Intermediate and High Temperature Properties of Neat and Modified Asphalt Binders and their Effect on Hot Mix Asphalt Mixtures. Constr. Build. Mater. 2022, 331, 127304. https://doi.org/10.1016/j.conbuildmat.2022.127304
[34] Merusi, F.; Giuliani, F.; Polacco, G. Linear Viscoelastic Behaviour of Asphalt Binders Modified with Polymer/Clay Nanocomposites. Procedia Soc. Behav. Sci. 2012, 53, 335–345. https://doi.org/10.1016/j.sbspro.2012.09.885
[35] Herrington, P. R.; Wu, Y.; Forbes, M. C. Rheological Modification of Bitumen with Maleic Anhydride and Dicarboxylic Acids. Fuel 1999, 78, 101–110. https://doi.org/10.1016/S0016-2361(98)00120-3
[36] Singh, B.; Kumar, L.; Gupta, M.; Chauhan, G. S. Polymer‐Modified Bitumen of Recycled LDPE and Maleated Bitumen. J. Appl. Polym. Sci. 2013, 127, 67–78. https://doi.org/10.1002/app.36810
[37] Bulatović, V. O.; Rek, V.; Marković, J. Rheological Properties of Bitumen Modified with Ethylene Butylacrylate Glycidylmethacrylate. Polym. Eng. Sci. 2014, 54, 1056–1065. https://doi.org/10.1002/pen.23649
[38] Geckil, T.; Seloglu, M. Performance Properties of Asphalt Modified with Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262–271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
[39] Kumandaş, A.; Çavdar, E.; Oruç, Ş.; Pancar, E. B.; Kök, B. V. Effect of WCO Addition on High and Low-temperature Performance of RET Modified Bitumen. Constr. Build. Mater. 2022, 323, 126561. https://doi.org/10.1016/j.conbuildmat.2022.126561
[40] Apostolidis, P.; Liu, X.; Erkens, S. M. J. G.; Scarpas, A. Evaluation of Epoxy Modification in Bitumen. Constr. Build. Mater. 2019, 208, 361–368. https://doi.org/10.1016/j.conbuildmat.2019.03.013
[41] Çubuk, M.; Gürü, M.; Çubuk, M. K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civ. Eng. 2014, 26, 04014015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
[42] Chopra, A.; Singh, S. Performance Evaluation on Epoxy Modified Bituminous Mix. Mater. Today: Proc. 2022, 51, 1197–1200. https://doi.org/10.1016/j.matpr.2021.07.206
[43] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69–76. https://doi.org/10.23939/chcht09.01.069
[44] Motamedi, M.; Attar, M. M.; Rostami, M. Performance Enhancement of the Oxidized Bitumen Binder Using Epoxy Resin. Prog. Org. Coat. 2017, 102, 178–185. https://doi.org/10.1016/j.porgcoat.2016.10.011
[45] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Modified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142–147. https://doi.org/10.23939/chcht15.01.142
[46] Cubuk, M.; Gürü, M.; Çubuk, M. K. Improvement of Bitumen Performance with Epoxy Resin. Fuel 2009, 88, 1324–1328. https://doi.org/10.1016/j.fuel.2008.12.024
[47] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689
[48] Ahmedzade, P.; Yilmaz, M. Effect of Polyester Resin Additive on the Properties of Asphalt Binders and Mixtures. Constr. Build. Mater. 2008, 22, 481–486. https://doi.org/10.1016/j.conbuildmat.2006.11.015
[49] Shi, X.; Zhang, H.;Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684–700. https://doi.org/10.1080/14680629.2020.1828154
[50] Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory Investigation on the Properties of Polyurethane/Unsaturated Polyester Resin Modified Bituminous Mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865
[51] Hunter, R. N.; Self, A.; Read, J. The shell bitumen handbook; Shell Bitumen: London, UK, 2015.
[52] Das, A. K.; Panda, M. Investigation on Rheological Performance of Sulphur Modified Bitumen (SMB) Binders. Constr. Build. Mater. 2017, 149, 724–732. https://doi.org/10.1016/j.conbuildmat.2017.05.198
[53] Fritschy, G.; Papirer, E.; Chambu, C. Sulfur Modified Bitumen: A New Binder. Rheol Acta 1981, 20, 78–84. https://doi.org/10.1007/BF01517475
[54] De Carcer, Í. A.; Masegosa, R. M.; Viñas, M. T.; Sanchez-Cabezudo, M.; Salom, C.; Prolongo, M. G.; Páez, A. Storage Stability of SBS/Sulfur Modified Bitumens at High Temperature: Influence of Bitumen Composition and Structure. Constr. Build. Mater. 2014, 52, 245–252. https://doi.org/10.1016/j.conbuildmat.2013.10.069
[55] Zeng, J.; Zhao, J. Mechanism and Performance Investigation of SBS/Sulfur Composite Modified Asphalt. Pet. Sci. 2022, 62, 732–739. https://doi.org/10.1134/S0965544122050140
[56] Martínez‐Estrada, A.; Chávez‐Castellanos, A. E.; Herrera‐Alonso, M.; Herrera‐Nájera, R. Comparative Study of the Effect of Sulfur on the Morphology and Rheological Properties of SB‐and SBS‐Modified Asphalt. J. Appl. Polym. Sci. 2010, 115, 3409–3422. https://doi.org/10.1002/app.31407
[57] Schermer, W. E. M.; Steernberg, K. Preparation process for polymer-modified bitumen. US 5719216 A, February 17, 1998.
[58] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
[59] Miknis, F. P.; Thomas, K. P. NMR Analysis of Polyphosphoric Acid-Modified Bitumens. Road Mater. Pavement Des. 2008, 9, 59–72. https://doi.org/10.1080/14680629.2008.9690107
[60] Baumgardner, G. L.; Masson, J. F.; Hardee, J. R.; Menapace, A. M.; Williams, A. G. Polyphosphoric Acid Modified Asphalt: Proposed Mechanisms. J. Assoc. Asphalt Paving Technol. 2005, 74, 283–305.
[61] Lesueur, D. The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen Modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. https://doi.org/10.1016/j.cis.2008.08.011
[62] Masson, J. F.; Gagné, M. Polyphosphoric Acid (PPA)-Modified Bitumen: Disruption of the Asphaltenes Network Based on the Reaction of Nonbasic Nitrogen with PPA. Energy Fuels 2008, 22, 3402–3406. https://doi.org/10.1021/ef8002944
[63] Han, Y.; Tian, J.; Ding, J.; Shu, L.; Ni, F. Evaluating the Storage Stability of SBR-Modified Asphalt Binder Containing Polyphosphoric Acid (PPA). Case Stud. Constr. Mater. 2022, 17, e01214. https://doi.org/10.1016/j.cscm.2022.e01214
[64] Singh, S. K.; Pandey, A.; Ravindranath, S. S. Effect of Additives on the Thermal Stability of SBS Modified Binders during Storage at Elevated Temperatures. Constr Build Mater. 2022, 314, 125609. https://doi.org/10.1016/j.conbuildmat.2021.125609
[65] Kang, Y.; Wang, F.; Chen, Z. Reaction of Asphalt and Maleic Anhydride: Kinetics and Mechanism. Chem. Eng. J. 2010, 164, 230–237. https://doi.org/10.1016/j.cej.2010.08.020
[66] Becker, M. Y.; Muller, A. J.; Rodriguez, Y. Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts. J. Appl. Polym. Sci. 2003, 90, 1772–1782. https://doi.org/10.1002/app.12764
[67] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443–449. https://doi.org/10.23939/chcht15.03.443
[68] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295–302. https://doi.org/10.23939/chcht16.02.295
[69] Gunka, V.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Prysiazhnyi, Yu.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475–483. https://doi.org/10.23939/chcht16.03.475
[70] Polacco, G.; Stastna, J.; Biondi, D.; Antonelli, F.; Vlachovicova, Z.; Zanzotto, L. Rheology of Asphalts Modified with Glycidylmethacrylate Functionalized Polymers. J. Colloid Interface Sci. 2004, 280, 366–373. https://doi.org/10.1016/j.jcis.2004.08.043
[71] Yeh, P. H.; Nien, Y. H.; Chen, J. H.; Chen, W. C.; Chen, J. S. Thermal and Rheological Properties of Maleated Polypropylene Modified Asphalt. Polym. Eng. Sci. 2005, 45, 1152–1158. https://doi.org/10.1002/pen.20386
[72] Ahmad, M.; Beddu, S.;Hussain, S.; Manan, A.; Itam, Z. B. Mechanical Properties of Hot-Mix Asphalt Using Waste Crumber Rubber and Phenol Formaldehyde Polymer. AIMS Mater. Sci. 2019, 6, 1164–1175. https://doi.org/10.3934/matersci.2019.6.1164
[73] Gupta, A.; Chopra, E. Comparative Study of Conventional and Bakelite Modified Bituminious Mix. Int. J. Civ. Eng. 2019, 10, 1386–1392. https://ssrn.com/abstract=3457096
[74] Saha, S. K.; Suman, S. K. Characterization of Bakelite-Modified Bitumen. Innov. Infrastruct. Solut. 2017, 2, 3. https://doi.org/10.1007/s41062-017-0052-0
[75] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420–429.
[76] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95–102. https://doi.org/10.1007/978-3-030-57340-9_12
[77] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199–1206.
[78] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13, 212–217. https://doi.org/10.23939/chcht13.02.212
[79] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251–256. https://doi.org/10.23939/chcht14.02.251
[80] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456–461 https://doi.org/10.23939/chcht12.04.456
[81] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B. B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906–2918. https://doi.org/10.1080/14680629.2020.1808518
[82] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279–287. https://doi.org/10.23939/chcht07.03.279
[83] Imoto, M.; Huang, C. Y.; Iguchi, T.; Sakurai, F.; Kuraya, T.; Yoshioka, S.; Itakura, J. Preparation of Thermosetting Hydrocarbon Resin. Resins from Formaldehyde, LXIII. Die Makromolekulare Chemie: Macromol. Chem. Phys. 1961, 43, 189–219. https://doi.org/10.1002/macp.1961.020430121
[84] Higashihara, G.; Okoshi, A. Aromatic hydrocarbon formaldehyde resin, modified aromatic hydrocarbon formaldehyde resin and epoxy resin, and method for producing these. US 9725551 B2, August 08, 2017.
[85] Moshchynska, N. K. Polimerni materialy na osnovi aromatychnykh vuhlevodniv i formaldehidu; Technika: Kyiv, 1970.
[86] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608–620. https://doi.org/10.23939/chcht15.04.608
[87] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
[88] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211–220. https://doi.org/10.23939/chcht17.01.211
[89] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701–710. https://doi.org/10.23939/chcht17.03.701
[90] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916–922. https://doi.org/10.23939/chcht17.04.916
[91] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, Iu.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
[92] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274–283. https://doi.org/10.23939/chcht15.02.274
[93] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111–118. https://doi.org/10.1007/978-3-030-27011-7_14
[94] Gunka, V.; Hidei, V.; Sidun, I.; Demchuk, Y.; Stadnik, V.; Shapoval, P.; Sobol, Kh.; Vytrykush, N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
[95] Gunka, V.; Demchuk, Y.; Drapak, I.; Korchak, B.; Bratychak, M. Kinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde. Chem. Chem. Technol. 2023, 17, 339–346. https://doi.org/10.23939/chcht17.02.339
[96] DSTU 4044:2019 Petroleum road viscous bitumen. Technical conditions.
[97] DSTU 9116:2021 Bitumen and bitumen binders. Road bitumen modified with polymers. Technical conditions.
[98] SOU 42.1-37641918-068:2017 Viscous road bitumen modified with wax-based additives. Technical conditions.
[99] SOU 45.2-00018112-067:2011 Construction materials. Viscous road bitumen modified with adhesive additives. Technical conditions. Amendment No. 1.