A Review of Road Bitumen Modification Methods. Part 2 - Chemical Modification

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Ananiy Kohut1, Olha Poliak1, Iurii Sidun1, Olena Astakhova1, Artur Onyshchenko2, Khrystyna Besaha1, Volodymyr Gunka1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., 79013 Lviv, Ukraine 2National transport university, 1 Mykhailа Omelianovycha - Pavlenka St., 01010 Kyiv, Ukraine volodymyr.m.hunka@lpnu.ua
DOI: 
https://doi.org/
AttachmentSize
PDF icon full_text.pdf523.62 KB
Abstract: 
A literature review of modern chemical methods for modifying road bitumen has been conducted, focusing on their popularity and the nature of their impact on binder properties. Sulfur, polyphosphoric acid, maleic anhydride, thermosetting resins (such as phenol-formaldehyde, epoxy, polyester, etc.), and polymers are the most commonly used chemical modifiers in road construction practices. The method of producing bituminous materials with varying penetration levels through the chemical modification of oil residues with formaldehyde has been considered. All bituminous materials produced via chemical modification demonstrate better homogeneity during high-temperature storage compared to those modified through physical methods due to the chemical interaction between a reactive modifier and bitumen. It has also been shown that chemical modifiers are often used in combination with physical modifiers to enhance their effectiveness.
References: 

[1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. https://doi.org/10.3390/app9040742
[2] Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Bratychak, M. Polymer Modified Bitumen. Chem. Chem. Technol. 2016, 10, 631–636. https://doi.org/10.23939/chcht10.04si.631
[3] Cuadri, A. A.; Partal, P.; Navarro, F. J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel 2011, 90, 2294–2300. https://doi.org/10.1016/j.fuel.2011.02.035
[4] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688–700. https://doi.org/10.23939/chcht17.03.688
[5] Gunka, V., Astakhova, O., Hrynchuk, Y., Sidun, I., Reutskyy, V., Mirchuk, I., Poliak, O. A Review of Road Bitumen Modification Methods. Part 1 - Physical Modification. Chem. Chem. Technol. 2024, 18, 295–304. https://doi.org/10.23939/chcht18.02.295
[6] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438–442. https://doi.org/10.23939/chcht15.03.438
[7] Zhu, J.; Birgisson, B.; Kringos, N. Polymer Modification of Bitumen: Advances and Challenges. Eur. Polym. J. 2014, 54, 18–38. https://doi.org/10.1016/j.eurpolymj.2014.02.005
[8] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54–62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
[9] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M .; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
[10] Mousavi, M.; Kabir, S. F.; Fini, E. H. Effects of Sulfur Phase Transition on Moisture-Induced Damages in Bitumen Colloidal Structure. J. Environ. Chem. Eng. 2022, 107, 109–117. https://doi.org/10.1016/j.jiec.2021.11.040
[11] Nguyen, T. T.; Tran, N. H.; Kien Bui, N.; Vu, T. T., Pham, H. K.; Bui, X. C. The Investigation on the Effects of Sulphur on the Performance of Sulphur-Bitumen Binder. Road Mater. Pavement Des. 2022, 24, 795–818. https://doi.org/10.1080/14680629.2022.2049351
[12] Sakib, N.; Bhasin, A.; Islam, M. K.; Khan, K.; Khan, M. I. A Review of the Evolution of Technologies to Use Sulphur as a Pavement Construction Material. Int. J. Pavement Eng. 2021, 22, 392-403. https://doi.org/10.1080/10298436.2019.1612064
[13] Singh, M.; Jain, K.; Kahlon, S. S. Use of Sulphur as an Additive in Bitumen: A Review. Int. Res. J. Eng. Technol, 2020, 7, 36–43.
[14] Xie, S.; Yi, J.; Zhou, T.; Fini, E. H.; Feng, D. Phase Transition Process of Sulfur in Bitumen and its Effect on Rheological Properties of Bitumen. Constr. Build. Mater. 2023, 364, 129914. https://doi.org/10.1016/j.conbuildmat.2022.129914
[15] Baldino, N.; Gabriele, D.; Lupi, F. R.; Rossi, C. O.; Caputo, P.; Falvo, T. Rheological Effects on Bitumen of Polyphosphoric Acid (PPA) Addition. Constr. Build. Mater. 2013, 40, 397–404. https://doi.org/10.1016/j.conbuildmat.2012.11.001
[16] Liu, S.; Zhou, S.; Peng, A. Evaluation of Polyphosphoric Acid on the Performance of Polymer Modified Asphalt Binders. J. Appl. Polym. Sci. 2020, 137, 48984. https://doi.org/10.1002/app.48984
[17] Kabir, S. F.; Mousavi, M.; Hung, A. M.; Fini, E. H. High-Sulfur Bitumen Amplifies the Effect of Polyphosphoric Acid. Fuel 2022, 314, 123128. https://doi.org/10.1016/j.fuel.2021.123128
[18] Masson, J. F. Brief Review of the Chemistry of Polyphosphoric Acid (PPA) and Bitumen. Energy Fuels 2008, 22, 2637–2640. https://doi.org/10.1021/ef800120x
[19] Özdemir, D. K. High and Low Temperature Rheological Characteristics of Linear Alkyl Benzene Sulfonic Acid Modified Bitumen. Constr. Build. Mater. 2021, 301, 124041. https://doi.org/10.1016/j.conbuildmat.2021.124041
[20] Ortega, F. J.; Navarro, F. J.; García-Morales, M. Dodecylbenzenesulfonic Acid as a Bitumen Modifier: A Novel Approach to Enhance Rheological Properties of Bitumen. Energy Fuels 2017, 1, 5003–5010. https://doi.org/10.1021/acs.energyfuels.7b00419
[21] Aldagari, S.; Hung, A. M.; Shariati, S.; Kabir, S. F.; Ranka, M.; Bird, R. C.; Fini, E. H. Enhanced Sustainability at the Bitumen-Aggregate Interface Using Organosilane Coating Technology. Constr. Build. Mater. 2022, 359, 129500. https://doi.org/10.1016/j.conbuildmat.2022.129500
[22] Mirzababaei, P.; Moghadas Nejad, F.; Naderi, K. Effect of Liquid Silane-Based Anti-Stripping Additives on Rheological Properties of Asphalt Binder and Hot Mix Asphalt Moisture Sensitivity. Road Mater. Pavement Des. 2020, 21, 570–585. https://doi.org/10.1080/14680629.2018.1507920
[23] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Chen, H. Effect of Silane Coupling Agent on Improving the Adhesive Properties between Asphalt Binder and Aggregates. Constr Build Mater. 2018, 169, 591–600. https://doi.org/10.1016/j.conbuildmat.2018.02.186
[24] Rossi, C. O.; Caputo, P.; Baldino, N.; Szerb, E. I.; Teltayev, B. Quantitative Evaluation of Organosilane-Based Adhesion Promoter Effect on Bitumen-Aggregate Bond by Contact Angle Test. Int. J. Adhes. Adhes. 2017, 72, 117–122. https://doi.org/10.1016/j.ijadhadh.2016.10.015
[25] Cuadri, A. A.; Partal, P.; Navarro, F. J.; García-Morales, M.; Gallegos, C. Influence of Processing Temperature on the Modification Route and Rheological Properties of Thiourea Dioxide-Modified Bitumen. Energy Fuels 2011, 25, 4055–4062. https://doi.org/10.1021/ef200801h
[26] Bagshaw, S. A.; Kemmitt, T.; Waterland, M.; Brooke, S. Effect of Blending Conditions on Nano-Clay Bitumen Nanocomposite Properties. Road Mater. Pavement Des. 2019, 20, 1735–1756. https://doi.org/10.1080/14680629.2018.1468802
[27] Bala, N.; Kamaruddin, I.; Napiah, M.; Sutanto, M. H. Polymer Nanocomposite-Modified Asphalt: Characterisation and Optimisation Using Response Surface Methodology. Arab. J. Sci. Eng. 2019, 44, 4233–4243. https://doi.org/10.1007/s13369-018-3377-x
[28] Dehouche, N.; Kaci, M.; Mouillet, V. The Effects of Mixing Rate on Morphology and Physical Properties of Bitumen/Organo-Modified Montmorillonite Nanocomposites. Constr. Build. Mater. 2016, 114, 76–86. https://doi.org/10.1016/j.conbuildmat.2016.03.151
[29] Günay, T.; Ahmedzade, P. Physical and Rheological Properties of nano-TiO2 and Nanocomposite Modified Bitumens. Constr. Build. Mater. 2020, 243, 118208. https://doi.org/10.1016/j.conbuildmat.2020.118208
[30] Gulzar, S.; Underwood, S. Use of Polymer Nanocomposites in Asphalt Binder Modification. In Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications; Ul Islam, Sh.; Butola, B. S., Eds.; Scrivener publishing, 2019; pp 405–431. https://doi.org/10.1002/9781119605843.ch14
[31] Kosma, V.; Hayrapetyan, S.; Diamanti, E.; Dhawale, A.; Giannelis, E. P. Bitumen Nanocomposites with Improved Performance. Constr. Build. Mater. 2018, 160, 30–38. https://doi.org/10.1016/j.conbuildmat.2017.11.024
[32] Mahali, I.; Sahoo, U. C. Rheological Characterization of Nanocomposite Modified Asphalt Binder. Int. J. Pavement Res. Technol. 2019, 12, 589–594. https://doi.org/10.1007/s42947-019-0070-8
[33] Mamuye, Y.; Liao, M. C.; Do, N. D. Nano-Al2O3 Composite on Intermediate and High Temperature Properties of Neat and Modified Asphalt Binders and their Effect on Hot Mix Asphalt Mixtures. Constr. Build. Mater. 2022, 331, 127304. https://doi.org/10.1016/j.conbuildmat.2022.127304
[34] Merusi, F.; Giuliani, F.; Polacco, G. Linear Viscoelastic Behaviour of Asphalt Binders Modified with Polymer/Clay Nanocomposites. Procedia Soc. Behav. Sci. 2012, 53, 335–345. https://doi.org/10.1016/j.sbspro.2012.09.885
[35] Herrington, P. R.; Wu, Y.; Forbes, M. C. Rheological Modification of Bitumen with Maleic Anhydride and Dicarboxylic Acids. Fuel 1999, 78, 101–110. https://doi.org/10.1016/S0016-2361(98)00120-3
[36] Singh, B.; Kumar, L.; Gupta, M.; Chauhan, G. S. Polymer‐Modified Bitumen of Recycled LDPE and Maleated Bitumen. J. Appl. Polym. Sci. 2013, 127, 67–78. https://doi.org/10.1002/app.36810
[37] Bulatović, V. O.; Rek, V.; Marković, J. Rheological Properties of Bitumen Modified with Ethylene Butylacrylate Glycidylmethacrylate. Polym. Eng. Sci. 2014, 54, 1056–1065. https://doi.org/10.1002/pen.23649
[38] Geckil, T.; Seloglu, M. Performance Properties of Asphalt Modified with Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262–271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
[39] Kumandaş, A.; Çavdar, E.; Oruç, Ş.; Pancar, E. B.; Kök, B. V. Effect of WCO Addition on High and Low-temperature Performance of RET Modified Bitumen. Constr. Build. Mater. 2022, 323, 126561. https://doi.org/10.1016/j.conbuildmat.2022.126561
[40] Apostolidis, P.; Liu, X.; Erkens, S. M. J. G.; Scarpas, A. Evaluation of Epoxy Modification in Bitumen. Constr. Build. Mater. 2019, 208, 361–368. https://doi.org/10.1016/j.conbuildmat.2019.03.013
[41] Çubuk, M.; Gürü, M.; Çubuk, M. K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civ. Eng. 2014, 26, 04014015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
[42] Chopra, A.; Singh, S. Performance Evaluation on Epoxy Modified Bituminous Mix. Mater. Today: Proc. 2022, 51, 1197–1200. https://doi.org/10.1016/j.matpr.2021.07.206
[43] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69–76. https://doi.org/10.23939/chcht09.01.069
[44] Motamedi, M.; Attar, M. M.; Rostami, M. Performance Enhancement of the Oxidized Bitumen Binder Using Epoxy Resin. Prog. Org. Coat. 2017, 102, 178–185. https://doi.org/10.1016/j.porgcoat.2016.10.011
[45] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Modified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142–147. https://doi.org/10.23939/chcht15.01.142
[46] Cubuk, M.; Gürü, M.; Çubuk, M. K. Improvement of Bitumen Performance with Epoxy Resin. Fuel 2009, 88, 1324–1328. https://doi.org/10.1016/j.fuel.2008.12.024
[47] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689
[48] Ahmedzade, P.; Yilmaz, M. Effect of Polyester Resin Additive on the Properties of Asphalt Binders and Mixtures. Constr. Build. Mater. 2008, 22, 481–486. https://doi.org/10.1016/j.conbuildmat.2006.11.015
[49] Shi, X.; Zhang, H.;Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684–700. https://doi.org/10.1080/14680629.2020.1828154
[50] Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory Investigation on the Properties of Polyurethane/Unsaturated Polyester Resin Modified Bituminous Mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865
[51] Hunter, R. N.; Self, A.; Read, J. The shell bitumen handbook; Shell Bitumen: London, UK, 2015.
[52] Das, A. K.; Panda, M. Investigation on Rheological Performance of Sulphur Modified Bitumen (SMB) Binders. Constr. Build. Mater. 2017, 149, 724–732. https://doi.org/10.1016/j.conbuildmat.2017.05.198
[53] Fritschy, G.; Papirer, E.; Chambu, C. Sulfur Modified Bitumen: A New Binder. Rheol Acta 1981, 20, 78–84. https://doi.org/10.1007/BF01517475
[54] De Carcer, Í. A.; Masegosa, R. M.; Viñas, M. T.; Sanchez-Cabezudo, M.; Salom, C.; Prolongo, M. G.; Páez, A. Storage Stability of SBS/Sulfur Modified Bitumens at High Temperature: Influence of Bitumen Composition and Structure. Constr. Build. Mater. 2014, 52, 245–252. https://doi.org/10.1016/j.conbuildmat.2013.10.069
[55] Zeng, J.; Zhao, J. Mechanism and Performance Investigation of SBS/Sulfur Composite Modified Asphalt. Pet. Sci. 2022, 62, 732–739. https://doi.org/10.1134/S0965544122050140
[56] Martínez‐Estrada, A.; Chávez‐Castellanos, A. E.; Herrera‐Alonso, M.; Herrera‐Nájera, R. Comparative Study of the Effect of Sulfur on the Morphology and Rheological Properties of SB‐and SBS‐Modified Asphalt. J. Appl. Polym. Sci. 2010, 115, 3409–3422. https://doi.org/10.1002/app.31407
[57] Schermer, W. E. M.; Steernberg, K. Preparation process for polymer-modified bitumen. US 5719216 A, February 17, 1998.
[58] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
[59] Miknis, F. P.; Thomas, K. P. NMR Analysis of Polyphosphoric Acid-Modified Bitumens. Road Mater. Pavement Des. 2008, 9, 59–72. https://doi.org/10.1080/14680629.2008.9690107
[60] Baumgardner, G. L.; Masson, J. F.; Hardee, J. R.; Menapace, A. M.; Williams, A. G. Polyphosphoric Acid Modified Asphalt: Proposed Mechanisms. J. Assoc. Asphalt Paving Technol. 2005, 74, 283–305.
[61] Lesueur, D. The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen Modification. Adv. Colloid Interface Sci. 2009, 145, 42–82. https://doi.org/10.1016/j.cis.2008.08.011
[62] Masson, J. F.; Gagné, M. Polyphosphoric Acid (PPA)-Modified Bitumen: Disruption of the Asphaltenes Network Based on the Reaction of Nonbasic Nitrogen with PPA. Energy Fuels 2008, 22, 3402–3406. https://doi.org/10.1021/ef8002944
[63] Han, Y.; Tian, J.; Ding, J.; Shu, L.; Ni, F. Evaluating the Storage Stability of SBR-Modified Asphalt Binder Containing Polyphosphoric Acid (PPA). Case Stud. Constr. Mater. 2022, 17, e01214. https://doi.org/10.1016/j.cscm.2022.e01214
[64] Singh, S. K.; Pandey, A.; Ravindranath, S. S. Effect of Additives on the Thermal Stability of SBS Modified Binders during Storage at Elevated Temperatures. Constr Build Mater. 2022, 314, 125609. https://doi.org/10.1016/j.conbuildmat.2021.125609
[65] Kang, Y.; Wang, F.; Chen, Z. Reaction of Asphalt and Maleic Anhydride: Kinetics and Mechanism. Chem. Eng. J. 2010, 164, 230–237. https://doi.org/10.1016/j.cej.2010.08.020
[66] Becker, M. Y.; Muller, A. J.; Rodriguez, Y. Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts. J. Appl. Polym. Sci. 2003, 90, 1772–1782. https://doi.org/10.1002/app.12764
[67] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443–449. https://doi.org/10.23939/chcht15.03.443
[68] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295–302. https://doi.org/10.23939/chcht16.02.295
[69] Gunka, V.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Prysiazhnyi, Yu.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475–483. https://doi.org/10.23939/chcht16.03.475
[70] Polacco, G.; Stastna, J.; Biondi, D.; Antonelli, F.; Vlachovicova, Z.; Zanzotto, L. Rheology of Asphalts Modified with Glycidylmethacrylate Functionalized Polymers. J. Colloid Interface Sci. 2004, 280, 366–373. https://doi.org/10.1016/j.jcis.2004.08.043
[71] Yeh, P. H.; Nien, Y. H.; Chen, J. H.; Chen, W. C.; Chen, J. S. Thermal and Rheological Properties of Maleated Polypropylene Modified Asphalt. Polym. Eng. Sci. 2005, 45, 1152–1158. https://doi.org/10.1002/pen.20386
[72] Ahmad, M.; Beddu, S.;Hussain, S.; Manan, A.; Itam, Z. B. Mechanical Properties of Hot-Mix Asphalt Using Waste Crumber Rubber and Phenol Formaldehyde Polymer. AIMS Mater. Sci. 2019, 6, 1164–1175. https://doi.org/10.3934/matersci.2019.6.1164
[73] Gupta, A.; Chopra, E. Comparative Study of Conventional and Bakelite Modified Bituminious Mix. Int. J. Civ. Eng. 2019, 10, 1386–1392. https://ssrn.com/abstract=3457096
[74] Saha, S. K.; Suman, S. K. Characterization of Bakelite-Modified Bitumen. Innov. Infrastruct. Solut. 2017, 2, 3. https://doi.org/10.1007/s41062-017-0052-0
[75] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420–429.
[76] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95–102. https://doi.org/10.1007/978-3-030-57340-9_12
[77] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199–1206.
[78] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13, 212–217. https://doi.org/10.23939/chcht13.02.212
[79] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251–256. https://doi.org/10.23939/chcht14.02.251
[80] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456–461 https://doi.org/10.23939/chcht12.04.456
[81] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B. B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906–2918. https://doi.org/10.1080/14680629.2020.1808518
[82] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279–287. https://doi.org/10.23939/chcht07.03.279
[83] Imoto, M.; Huang, C. Y.; Iguchi, T.; Sakurai, F.; Kuraya, T.; Yoshioka, S.; Itakura, J. Preparation of Thermosetting Hydrocarbon Resin. Resins from Formaldehyde, LXIII. Die Makromolekulare Chemie: Macromol. Chem. Phys. 1961, 43, 189–219. https://doi.org/10.1002/macp.1961.020430121
[84] Higashihara, G.; Okoshi, A. Aromatic hydrocarbon formaldehyde resin, modified aromatic hydrocarbon formaldehyde resin and epoxy resin, and method for producing these. US 9725551 B2, August 08, 2017.
[85] Moshchynska, N. K. Polimerni materialy na osnovi aromatychnykh vuhlevodniv i formaldehidu; Technika: Kyiv, 1970.
[86] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608–620. https://doi.org/10.23939/chcht15.04.608
[87] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142–149. https://doi.org/10.23939/chcht16.01.142
[88] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211–220. https://doi.org/10.23939/chcht17.01.211
[89] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701–710. https://doi.org/10.23939/chcht17.03.701
[90] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916–922. https://doi.org/10.23939/chcht17.04.916
[91] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, Iu.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
[92] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274–283. https://doi.org/10.23939/chcht15.02.274
[93] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111–118. https://doi.org/10.1007/978-3-030-27011-7_14
[94] Gunka, V.; Hidei, V.; Sidun, I.; Demchuk, Y.; Stadnik, V.; Shapoval, P.; Sobol, Kh.; Vytrykush, N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
[95] Gunka, V.; Demchuk, Y.; Drapak, I.; Korchak, B.; Bratychak, M. Kinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde. Chem. Chem. Technol. 2023, 17, 339–346. https://doi.org/10.23939/chcht17.02.339
[96] DSTU 4044:2019 Petroleum road viscous bitumen. Technical conditions.
[97] DSTU 9116:2021 Bitumen and bitumen binders. Road bitumen modified with polymers. Technical conditions.
[98] SOU 42.1-37641918-068:2017 Viscous road bitumen modified with wax-based additives. Technical conditions.
[99] SOU 45.2-00018112-067:2011 Construction materials. Viscous road bitumen modified with adhesive additives. Technical conditions. Amendment No. 1.