A Review of Road Bitumen Modification Methods. Part 2 - Chemical Modification

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Ananiy Kohut1, Olha Poliak1, Iurii Sidun1, Olena Astakhova1, Artur Onyshchenko2, Khrystyna Besaha1, Volodymyr Gunka1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., 79013 Lviv, Ukraine 2National transport university, 1 Mykhailа Omelianovycha - Pavlenka St., 01010 Kyiv, Ukraine volodymyr.m.hunka@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.01.141
AttachmentSize
PDF icon full_text.pdf523.62 KB
Abstract: 
A literature review of modern chemical methods for modifying road bitumen has been conducted, focusing on their popularity and the nature of their impact on binder properties. Sulfur, polyphosphoric acid, maleic anhydride, thermosetting resins (such as phenol-formaldehyde, epoxy, polyester, etc.), and polymers are the most commonly used chemical modifiers in road construction practices. The method of producing bituminous materials with varying penetration levels through the chemical modification of oil residues with formaldehyde has been considered. All bituminous materials produced via chemical modification demonstrate better homogeneity during high-temperature storage compared to those modified through physical methods due to the chemical interaction between a reactive modifier and bitumen. It has also been shown that chemical modifiers are often used in combination with physical modifiers to enhance their effectiveness.
References: 

[1] Porto, M.; Caputo, P.; Loise, V.; Eskandarsefat, S.; Teltayev, B.; Oliviero Rossi, C. Bitumen and Bitumen Modification: A Review on Latest Advances. Appl. Sci. 2019, 9, 742. https://doi.org/10.3390/app9040742
https://doi.org/10.3390/app9040742

[2] Pyshyev, S.; Gunka, V.; Grytsenko, Y.; Bratychak, M. Polymer Modified Bitumen. Chem. Chem. Technol. 2016, 10, 631-636. https://doi.org/10.23939/chcht10.04si.631
https://doi.org/10.23939/chcht10.04si.631

[3] Cuadri, A. A.; Partal, P.; Navarro, F. J.; García-Morales, M.; Gallegos, C. Bitumen Chemical Modification by Thiourea Dioxide. Fuel 2011, 90, 2294-2300. https://doi.org/10.1016/j.fuel.2011.02.035
https://doi.org/10.1016/j.fuel.2011.02.035

[4] Onyshchenko, A.; Lisnevskyi, R.; Poliak, O.; Rybchynskyi, S.; Shyshkin, E. Study on the Effect of Butonal NX4190 Polymer Latex on the Properties of Bitumen Binder and Asphalt Concrete. Chem. Chem. Technol. 2023, 17, 688-700. https://doi.org/10.23939/chcht17.03.688
https://doi.org/10.23939/chcht17.03.688

[5] Gunka, V., Astakhova, O., Hrynchuk, Y., Sidun, I., Reutskyy, V., Mirchuk, I., Poliak, O. A Review of Road Bitumen Modification Methods. Part 1 - Physical Modification. Chem. Chem. Technol. 2024, 18, 295-304. https://doi.org/10.23939/chcht18.02.295
https://doi.org/10.23939/chcht18.02.295

[6] Grynyshyn, O.; Donchenko, M.; Khlibyshyn, Yu.; Poliak, O. Investigation of Petroleum Bitumen Resistance to Aging. Chem. Chem. Technol. 2021, 15, 438-442. https://doi.org/10.23939/chcht15.03.438
https://doi.org/10.23939/chcht15.03.438

[7] Zhu, J.; Birgisson, B.; Kringos, N. Polymer Modification of Bitumen: Advances and Challenges. Eur. Polym. J. 2014, 54, 18-38. https://doi.org/10.1016/j.eurpolymj.2014.02.005
https://doi.org/10.1016/j.eurpolymj.2014.02.005

[8] Grynyshyn, O.; Donchenko, M; Kochubei, V.; Khlibyshyn, Y. Main Features of the Technological Process of Aging of Bitumen Obtained from the Residues from Ukrainian Crude Oil Processing. Vopr. Khimii i Khimicheskoi Tekhnologii 2023, 3, 54-62. https://doi.org/10.32434/0321-4095-2023-148-3-54-62
https://doi.org/10.32434/0321-4095-2023-148-3-54-62

[9] Pstrowska, K.; Gunka, V.; Sidun, I.; Demchuk, Y.; Vytrykush, N.; Kułażyński, M .; Bratychak, M. Adhesion in Bitumen/Aggregate System: Adhesion Mechanism and Test Methods. Coatings 2022, 12, 1934. https://doi.org/10.3390/coatings12121934
https://doi.org/10.3390/coatings12121934

[10] Mousavi, M.; Kabir, S. F.; Fini, E. H. Effects of Sulfur Phase Transition on Moisture-Induced Damages in Bitumen Colloidal Structure. J. Environ. Chem. Eng. 2022, 107, 109-117. https://doi.org/10.1016/j.jiec.2021.11.040
https://doi.org/10.1016/j.jiec.2021.11.040

[11] Nguyen, T. T.; Tran, N. H.; Kien Bui, N.; Vu, T. T., Pham, H. K.; Bui, X. C. The Investigation on the Effects of Sulphur on the Performance of Sulphur-Bitumen Binder. Road Mater. Pavement Des. 2022, 24, 795-818. https://doi.org/10.1080/14680629.2022.2049351
https://doi.org/10.1080/14680629.2022.2049351

[12] Sakib, N.; Bhasin, A.; Islam, M. K.; Khan, K.; Khan, M. I. A Review of the Evolution of Technologies to Use Sulphur as a Pavement Construction Material. Int. J. Pavement Eng. 2021, 22, 392-403. https://doi.org/10.1080/10298436.2019.1612064
https://doi.org/10.1080/10298436.2019.1612064

[13] Singh, M.; Jain, K.; Kahlon, S. S. Use of Sulphur as an Additive in Bitumen: A Review. Int. Res. J. Eng. Technol, 2020, 7, 36-43.

[14] Xie, S.; Yi, J.; Zhou, T.; Fini, E. H.; Feng, D. Phase Transition Process of Sulfur in Bitumen and its Effect on Rheological Properties of Bitumen. Constr. Build. Mater. 2023, 364, 129914. https://doi.org/10.1016/j.conbuildmat.2022.129914
https://doi.org/10.1016/j.conbuildmat.2022.129914

[15] Baldino, N.; Gabriele, D.; Lupi, F. R.; Rossi, C. O.; Caputo, P.; Falvo, T. Rheological Effects on Bitumen of Polyphosphoric Acid (PPA) Addition. Constr. Build. Mater. 2013, 40, 397-404. https://doi.org/10.1016/j.conbuildmat.2012.11.001
https://doi.org/10.1016/j.conbuildmat.2012.11.001

[16] Liu, S.; Zhou, S.; Peng, A. Evaluation of Polyphosphoric Acid on the Performance of Polymer Modified Asphalt Binders. J. Appl. Polym. Sci. 2020, 137, 48984. https://doi.org/10.1002/app.48984
https://doi.org/10.1002/app.48984

[17] Kabir, S. F.; Mousavi, M.; Hung, A. M.; Fini, E. H. High-Sulfur Bitumen Amplifies the Effect of Polyphosphoric Acid. Fuel 2022, 314, 123128. https://doi.org/10.1016/j.fuel.2021.123128
https://doi.org/10.1016/j.fuel.2021.123128

[18] Masson, J. F. Brief Review of the Chemistry of Polyphosphoric Acid (PPA) and Bitumen. Energy Fuels 2008, 22, 2637-2640. https://doi.org/10.1021/ef800120x
https://doi.org/10.1021/ef800120x

[19] Özdemir, D. K. High and Low Temperature Rheological Characteristics of Linear Alkyl Benzene Sulfonic Acid Modified Bitumen. Constr. Build. Mater. 2021, 301, 124041. https://doi.org/10.1016/j.conbuildmat.2021.124041
https://doi.org/10.1016/j.conbuildmat.2021.124041

[20] Ortega, F. J.; Navarro, F. J.; García-Morales, M. Dodecylbenzenesulfonic Acid as a Bitumen Modifier: A Novel Approach to Enhance Rheological Properties of Bitumen. Energy Fuels 2017, 1, 5003-5010. https://doi.org/10.1021/acs.energyfuels.7b00419
https://doi.org/10.1021/acs.energyfuels.7b00419

[21] Aldagari, S.; Hung, A. M.; Shariati, S.; Kabir, S. F.; Ranka, M.; Bird, R. C.; Fini, E. H. Enhanced Sustainability at the Bitumen-Aggregate Interface Using Organosilane Coating Technology. Constr. Build. Mater. 2022, 359, 129500. https://doi.org/10.1016/j.conbuildmat.2022.129500
https://doi.org/10.1016/j.conbuildmat.2022.129500

[22] Mirzababaei, P.; Moghadas Nejad, F.; Naderi, K. Effect of Liquid Silane-Based Anti-Stripping Additives on Rheological Properties of Asphalt Binder and Hot Mix Asphalt Moisture Sensitivity. Road Mater. Pavement Des. 2020, 21, 570-585. https://doi.org/10.1080/14680629.2018.1507920
https://doi.org/10.1080/14680629.2018.1507920

[23] Peng, C.; Chen, P.; You, Z.; Lv, S.; Zhang, R.; Xu, F.; Chen, H. Effect of Silane Coupling Agent on Improving the Adhesive Properties between Asphalt Binder and Aggregates. Constr Build Mater. 2018, 169, 591-600. https://doi.org/10.1016/j.conbuildmat.2018.02.186
https://doi.org/10.1016/j.conbuildmat.2018.02.186

[24] Rossi, C. O.; Caputo, P.; Baldino, N.; Szerb, E. I.; Teltayev, B. Quantitative Evaluation of Organosilane-Based Adhesion Promoter Effect on Bitumen-Aggregate Bond by Contact Angle Test. Int. J. Adhes. Adhes. 2017, 72, 117-122. https://doi.org/10.1016/j.ijadhadh.2016.10.015
https://doi.org/10.1016/j.ijadhadh.2016.10.015

[25] Cuadri, A. A.; Partal, P.; Navarro, F. J.; García-Morales, M.; Gallegos, C. Influence of Processing Temperature on the Modification Route and Rheological Properties of Thiourea Dioxide-Modified Bitumen. Energy Fuels 2011, 25, 4055-4062. https://doi.org/10.1021/ef200801h
https://doi.org/10.1021/ef200801h

[26] Bagshaw, S. A.; Kemmitt, T.; Waterland, M.; Brooke, S. Effect of Blending Conditions on Nano-Clay Bitumen Nanocomposite Properties. Road Mater. Pavement Des. 2019, 20, 1735-1756. https://doi.org/10.1080/14680629.2018.1468802
https://doi.org/10.1080/14680629.2018.1468802

[27] Bala, N.; Kamaruddin, I.; Napiah, M.; Sutanto, M. H. Polymer Nanocomposite-Modified Asphalt: Characterisation and Optimisation Using Response Surface Methodology. Arab. J. Sci. Eng. 2019, 44, 4233-4243. https://doi.org/10.1007/s13369-018-3377-x
https://doi.org/10.1007/s13369-018-3377-x

[28] Dehouche, N.; Kaci, M.; Mouillet, V. The Effects of Mixing Rate on Morphology and Physical Properties of Bitumen/Organo-Modified Montmorillonite Nanocomposites. Constr. Build. Mater. 2016, 114, 76-86. https://doi.org/10.1016/j.conbuildmat.2016.03.151
https://doi.org/10.1016/j.conbuildmat.2016.03.151

[29] Günay, T.; Ahmedzade, P. Physical and Rheological Properties of nano-TiO2 and Nanocomposite Modified Bitumens. Constr. Build. Mater. 2020, 243, 118208. https://doi.org/10.1016/j.conbuildmat.2020.118208
https://doi.org/10.1016/j.conbuildmat.2020.118208

[30] Gulzar, S.; Underwood, S. Use of Polymer Nanocomposites in Asphalt Binder Modification. In Advanced Functional Textiles and Polymers: Fabrication, Processing and Applications; Ul Islam, Sh.; Butola, B. S., Eds.; Scrivener publishing, 2019; pp 405-431. https://doi.org/10.1002/9781119605843.ch14
https://doi.org/10.1002/9781119605843.ch14

[31] Kosma, V.; Hayrapetyan, S.; Diamanti, E.; Dhawale, A.; Giannelis, E. P. Bitumen Nanocomposites with Improved Performance. Constr. Build. Mater. 2018, 160, 30-38. https://doi.org/10.1016/j.conbuildmat.2017.11.024
https://doi.org/10.1016/j.conbuildmat.2017.11.024

[32] Mahali, I.; Sahoo, U. C. Rheological Characterization of Nanocomposite Modified Asphalt Binder. Int. J. Pavement Res. Technol. 2019, 12, 589-594. https://doi.org/10.1007/s42947-019-0070-8
https://doi.org/10.1007/s42947-019-0070-8

[33] Mamuye, Y.; Liao, M. C.; Do, N. D. Nano-Al2O3 Composite on Intermediate and High Temperature Properties of Neat and Modified Asphalt Binders and their Effect on Hot Mix Asphalt Mixtures. Constr. Build. Mater. 2022, 331, 127304. https://doi.org/10.1016/j.conbuildmat.2022.127304
https://doi.org/10.1016/j.conbuildmat.2022.127304

[34] Merusi, F.; Giuliani, F.; Polacco, G. Linear Viscoelastic Behaviour of Asphalt Binders Modified with Polymer/Clay Nanocomposites. Procedia Soc. Behav. Sci. 2012, 53, 335-345. https://doi.org/10.1016/j.sbspro.2012.09.885
https://doi.org/10.1016/j.sbspro.2012.09.885

[35] Herrington, P. R.; Wu, Y.; Forbes, M. C. Rheological Modification of Bitumen with Maleic Anhydride and Dicarboxylic Acids. Fuel 1999, 78, 101-110. https://doi.org/10.1016/S0016-2361(98)00120-3
https://doi.org/10.1016/S0016-2361(98)00120-3

[36] Singh, B.; Kumar, L.; Gupta, M.; Chauhan, G. S. Polymer‐Modified Bitumen of Recycled LDPE and Maleated Bitumen. J. Appl. Polym. Sci. 2013, 127, 67-78. https://doi.org/10.1002/app.36810
https://doi.org/10.1002/app.36810

[37] Bulatović, V. O.; Rek, V.; Marković, J. Rheological Properties of Bitumen Modified with Ethylene Butylacrylate Glycidylmethacrylate. Polym. Eng. Sci. 2014, 54, 1056-1065. https://doi.org/10.1002/pen.23649
https://doi.org/10.1002/pen.23649

[38] Geckil, T.; Seloglu, M. Performance Properties of Asphalt Modified with Reactive Terpolymer. Constr. Build. Mater. 2018, 173, 262-271. https://doi.org/10.1016/j.conbuildmat.2018.04.036
https://doi.org/10.1016/j.conbuildmat.2018.04.036

[39] Kumandaş, A.; Çavdar, E.; Oruç, Ş.; Pancar, E. B.; Kök, B. V. Effect of WCO Addition on High and Low-temperature Performance of RET Modified Bitumen. Constr. Build. Mater. 2022, 323, 126561. https://doi.org/10.1016/j.conbuildmat.2022.126561
https://doi.org/10.1016/j.conbuildmat.2022.126561

[40] Apostolidis, P.; Liu, X.; Erkens, S. M. J. G.; Scarpas, A. Evaluation of Epoxy Modification in Bitumen. Constr. Build. Mater. 2019, 208, 361-368. https://doi.org/10.1016/j.conbuildmat.2019.03.013
https://doi.org/10.1016/j.conbuildmat.2019.03.013

[41] Çubuk, M.; Gürü, M.; Çubuk, M. K.; Arslan, D. Rheological Properties and Performance Evaluation of Phenol Formaldehyde Modified Bitumen. J. Mater. Civ. Eng. 2014, 26, 04014015. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000889

[42] Chopra, A.; Singh, S. Performance Evaluation on Epoxy Modified Bituminous Mix. Mater. Today: Proc. 2022, 51, 1197-1200. https://doi.org/10.1016/j.matpr.2021.07.206
https://doi.org/10.1016/j.matpr.2021.07.206

[43] Ivashkiv, O.; Astakhova, O.; Shyshchak, O.; Plonska-Brzezinska, M.; Bratychak, M. Structure and Application of ED-20 Epoxy Resin Hydroxy-Containing Derivatives in Bitumen-Polymeric Blends. Chem. Chem. Technol. 2015, 9, 69-76. https://doi.org/10.23939/chcht09.01.069
https://doi.org/10.23939/chcht09.01.069

[44] Motamedi, M.; Attar, M. M.; Rostami, M. Performance Enhancement of the Oxidized Bitumen Binder Using Epoxy Resin. Prog. Org. Coat. 2017, 102, 178-185. https://doi.org/10.1016/j.porgcoat.2016.10.011
https://doi.org/10.1016/j.porgcoat.2016.10.011

[45] Starchevskyy, V.; Hrynchuk, Y.; Matcipura, P.; Reutskyy, V. Influence of Initiators on the Adhesion Properties of Bitumen Modified by Natural Origin Epoxide. Chem. Chem. Technol. 2021, 15, 142-147. https://doi.org/10.23939/chcht15.01.142
https://doi.org/10.23939/chcht15.01.142

[46] Cubuk, M.; Gürü, M.; Çubuk, M. K. Improvement of Bitumen Performance with Epoxy Resin. Fuel 2009, 88, 1324-1328. https://doi.org/10.1016/j.fuel.2008.12.024
https://doi.org/10.1016/j.fuel.2008.12.024

[47] Xia, Q.; Li, Y.; Xu, H.; Luo, H.; Zheng, Y.; Zhao, R.; Xu, H. Using Phenol Formaldehyde Resin, Hexamethylenetetramine and Matrix Asphalt to Synthesize Hard-Grade Asphalts for High-Modulus Asphalt Concrete. Sustainability 2022, 14, 15689. https://doi.org/10.3390/su142315689
https://doi.org/10.3390/su142315689

[48] Ahmedzade, P.; Yilmaz, M. Effect of Polyester Resin Additive on the Properties of Asphalt Binders and Mixtures. Constr. Build. Mater. 2008, 22, 481-486. https://doi.org/10.1016/j.conbuildmat.2006.11.015
https://doi.org/10.1016/j.conbuildmat.2006.11.015

[49] Shi, X.; Zhang, H.;Bu, X.; Zhang, G.; Zhang, H.; Kang, H. Performance Evaluation of BDM/Unsaturated Polyester Resin-Modified Asphalt Mixture for Application in Bridge Deck Pavement. Road Mater. Pavement Des. 2022, 23, 684-700. https://doi.org/10.1080/14680629.2020.1828154
https://doi.org/10.1080/14680629.2020.1828154

[50] Zhang, H.; Su, C.; Bu, X.; Zhang, Y.; Gao, Y.; Huang, M. Laboratory Investigation on the Properties of Polyurethane/Unsaturated Polyester Resin Modified Bituminous Mixture. Constr. Build. Mater. 2020, 260, 119865. https://doi.org/10.1016/j.conbuildmat.2020.119865
https://doi.org/10.1016/j.conbuildmat.2020.119865

[51] Hunter, R. N.; Self, A.; Read, J. The shell bitumen handbook; Shell Bitumen: London, UK, 2015.
https://doi.org/10.1680/tsbh.58378

[52] Das, A. K.; Panda, M. Investigation on Rheological Performance of Sulphur Modified Bitumen (SMB) Binders. Constr. Build. Mater. 2017, 149, 724-732. https://doi.org/10.1016/j.conbuildmat.2017.05.198
https://doi.org/10.1016/j.conbuildmat.2017.05.198

[53] Fritschy, G.; Papirer, E.; Chambu, C. Sulfur Modified Bitumen: A New Binder. Rheol Acta 1981, 20, 78-84. https://doi.org/10.1007/BF01517475
https://doi.org/10.1007/BF01517475

[54] De Carcer, Í. A.; Masegosa, R. M.; Viñas, M. T.; Sanchez-Cabezudo, M.; Salom, C.; Prolongo, M. G.; Páez, A. Storage Stability of SBS/Sulfur Modified Bitumens at High Temperature: Influence of Bitumen Composition and Structure. Constr. Build. Mater. 2014, 52, 245-252. https://doi.org/10.1016/j.conbuildmat.2013.10.069
https://doi.org/10.1016/j.conbuildmat.2013.10.069

[55] Zeng, J.; Zhao, J. Mechanism and Performance Investigation of SBS/Sulfur Composite Modified Asphalt. Pet. Sci. 2022, 62, 732-739. https://doi.org/10.1134/S0965544122050140
https://doi.org/10.1134/S0965544122050140

[56] Martínez‐Estrada, A.; Chávez‐Castellanos, A. E.; Herrera‐Alonso, M.; Herrera‐Nájera, R. Comparative Study of the Effect of Sulfur on the Morphology and Rheological Properties of SB‐and SBS‐Modified Asphalt. J. Appl. Polym. Sci. 2010, 115, 3409-3422. https://doi.org/10.1002/app.31407
https://doi.org/10.1002/app.31407

[57] Schermer, W. E. M.; Steernberg, K. Preparation process for polymer-modified bitumen. US 5719216 A, February 17, 1998.

[58] Wręczycki, J.; Demchuk, Y.; Bieliński, D.M.; Bratychak, M.; Gunka, V.; Anyszka, R.; Gozdek, T. Bitumen Binders Modified with Sulfur/Organic Copolymers. Materials 2022, 15, 1774. https://doi.org/10.3390/ma15051774
https://doi.org/10.3390/ma15051774

[59] Miknis, F. P.; Thomas, K. P. NMR Analysis of Polyphosphoric Acid-Modified Bitumens. Road Mater. Pavement Des. 2008, 9, 59-72. https://doi.org/10.1080/14680629.2008.9690107
https://doi.org/10.1080/14680629.2008.9690107

[60] Baumgardner, G. L.; Masson, J. F.; Hardee, J. R.; Menapace, A. M.; Williams, A. G. Polyphosphoric Acid Modified Asphalt: Proposed Mechanisms. J. Assoc. Asphalt Paving Technol. 2005, 74, 283-305.

[61] Lesueur, D. The Colloidal Structure of Bitumen: Consequences on the Rheology and on the Mechanisms of Bitumen Modification. Adv. Colloid Interface Sci. 2009, 145, 42-82. https://doi.org/10.1016/j.cis.2008.08.011
https://doi.org/10.1016/j.cis.2008.08.011

[62] Masson, J. F.; Gagné, M. Polyphosphoric Acid (PPA)-Modified Bitumen: Disruption of the Asphaltenes Network Based on the Reaction of Nonbasic Nitrogen with PPA. Energy Fuels 2008, 22, 3402-3406. https://doi.org/10.1021/ef8002944
https://doi.org/10.1021/ef8002944

[63] Han, Y.; Tian, J.; Ding, J.; Shu, L.; Ni, F. Evaluating the Storage Stability of SBR-Modified Asphalt Binder Containing Polyphosphoric Acid (PPA). Case Stud. Constr. Mater. 2022, 17, e01214. https://doi.org/10.1016/j.cscm.2022.e01214
https://doi.org/10.1016/j.cscm.2022.e01214

[64] Singh, S. K.; Pandey, A.; Ravindranath, S. S. Effect of Additives on the Thermal Stability of SBS Modified Binders during Storage at Elevated Temperatures. Constr Build Mater. 2022, 314, 125609. https://doi.org/10.1016/j.conbuildmat.2021.125609
https://doi.org/10.1016/j.conbuildmat.2021.125609

[65] Kang, Y.; Wang, F.; Chen, Z. Reaction of Asphalt and Maleic Anhydride: Kinetics and Mechanism. Chem. Eng. J. 2010, 164, 230-237. https://doi.org/10.1016/j.cej.2010.08.020
https://doi.org/10.1016/j.cej.2010.08.020

[66] Becker, M. Y.; Muller, A. J.; Rodriguez, Y. Use of Rheological Compatibility Criteria to Study SBS Modified Asphalts. J. Appl. Polym. Sci. 2003, 90, 1772-1782. https://doi.org/10.1002/app.12764
https://doi.org/10.1002/app.12764

[67] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 2. Bitumen Modified with Maleic Anhydride. Chem. Chem. Technol. 2021, 15, 443-449. https://doi.org/10.23939/chcht15.03.443
https://doi.org/10.23939/chcht15.03.443

[68] Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, I.; Reutskyy, V.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 5. Use of Maleic Anhydride for Foaming Bitumens. Chem. Chem. Technol. 2022, 16, 295-302. https://doi.org/10.23939/chcht16.02.295
https://doi.org/10.23939/chcht16.02.295

[69] Gunka, V.; Hrynchuk, Yu.; Sidun, I.; Demchuk, Yu.; Prysiazhnyi, Yu.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 6. Temperature Effect on the Chemical Modification of Bitumen with Maleic Anhydride. Chem. Chem. Technol. 2022, 16, 475-483. https://doi.org/10.23939/chcht16.03.475
https://doi.org/10.23939/chcht16.03.475

[70] Polacco, G.; Stastna, J.; Biondi, D.; Antonelli, F.; Vlachovicova, Z.; Zanzotto, L. Rheology of Asphalts Modified with Glycidylmethacrylate Functionalized Polymers. J. Colloid Interface Sci. 2004, 280, 366-373. https://doi.org/10.1016/j.jcis.2004.08.043
https://doi.org/10.1016/j.jcis.2004.08.043

[71] Yeh, P. H.; Nien, Y. H.; Chen, J. H.; Chen, W. C.; Chen, J. S. Thermal and Rheological Properties of Maleated Polypropylene Modified Asphalt. Polym. Eng. Sci. 2005, 45, 1152-1158. https://doi.org/10.1002/pen.20386
https://doi.org/10.1002/pen.20386

[72] Ahmad, M.; Beddu, S.;Hussain, S.; Manan, A.; Itam, Z. B. Mechanical Properties of Hot-Mix Asphalt Using Waste Crumber Rubber and Phenol Formaldehyde Polymer. AIMS Mater. Sci. 2019, 6, 1164-1175. https://doi.org/10.3934/matersci.2019.6.1164
https://doi.org/10.3934/matersci.2019.6.1164

[73] Gupta, A.; Chopra, E. Comparative Study of Conventional and Bakelite Modified Bituminious Mix. Int. J. Civ. Eng. 2019, 10, 1386-1392. https://ssrn.com/abstract=3457096

[74] Saha, S. K.; Suman, S. K. Characterization of Bakelite-Modified Bitumen. Innov. Infrastruct. Solut. 2017, 2, 3. https://doi.org/10.1007/s41062-017-0052-0
https://doi.org/10.1007/s41062-017-0052-0

[75] Gunka, V.; Demchuk, Y.; Sidun, I.; Kochubei, V.; Shved, M.; Romanchuk, V.; Korchak, B. Chemical Modification of Road Oil Bitumens by Formaldehyde. Pet. Coal 2020, 62, 420-429.

[76] Demchuk, Y.; Gunka, V.; Sidun, I.; Solodkyy, S. Comparison of Bitumen Modified by Phenol Formaldehyde Resins Synthesized from Different Raw Materials. Proc. of EcoComfort. 2020, 100, 95-102. https://doi.org/10.1007/978-3-030-57340-9_12
https://doi.org/10.1007/978-3-030-57340-9_12

[77] Gunka, V.; Demchuk, Y.; Pyshyev, S.; Anatolii, S.; Lypko, Y. The Selection of Raw Materials for the Production of Road Bitumen Modified by Phenol-Cresol-Formaldehyde Resins. Pet. Coal 2018, 60, 1199-1206.

[78] Pyshyev, S.; Demchuk, Y.; Gunka, V.; Sidun, I.; Shved, M.; Bilushchak, H.; Obshta, A. Development of Mathematical Model and Identification of Optimal Conditions to Obtain Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2019, 13, 212-217. https://doi.org/10.23939/chcht13.02.212
https://doi.org/10.23939/chcht13.02.212

[79] Demchuk, Y.; Gunka, V.; Pyshyev, S.; Sidun, I.; Hrynchuk, Y.; Kucińska-Lipka, J.; Bratychak, M. Slurry Surfacing Mixes on the Basis of Bitumen Modified with Phenol-Cresol-Formaldehyde Resin. Chem. Chem. Technol. 2020, 14, 251-256. https://doi.org/10.23939/chcht14.02.251
https://doi.org/10.23939/chcht14.02.251

[80] Demchuk, Y.; Sidun, I.; Gunka, V.; Pyshyev, S.; Solodkyy, S. Effect of Phenol-Cresol-Formaldehyde Resin on Adhesive and Physico-Mechanical Properties of Road Bitumen. Chem. Chem. Technol. 2018, 12, 456-461 https://doi.org/10.23939/chcht12.04.456
https://doi.org/10.23939/chcht12.04.456

[81] Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B. B.; Pyshyev, S. Application of Phenol-Cresol-Formaldehyde Resin as an Adhesion Promoter for Bitumen and Asphalt Concrete. Road Mater. Pavement Des. 2021, 22, 2906-2918. https://doi.org/10.1080/14680629.2020.1808518
https://doi.org/10.1080/14680629.2020.1808518

[82] Strap, G.; Astakhova, O.; Lazorko, O.; Shyshchak, O.; Bratychak, M. Modified Phenol-Formaldehyde Resins and their Application in Bitumen-Polymeric Mixtures. Chem. Chem. Technol. 2013, 7, 279-287. https://doi.org/10.23939/chcht07.03.279
https://doi.org/10.23939/chcht07.03.279

[83] Imoto, M.; Huang, C. Y.; Iguchi, T.; Sakurai, F.; Kuraya, T.; Yoshioka, S.; Itakura, J. Preparation of Thermosetting Hydrocarbon Resin. Resins from Formaldehyde, LXIII. Die Makromolekulare Chemie: Macromol. Chem. Phys. 1961, 43, 189-219. https://doi.org/10.1002/macp.1961.020430121
https://doi.org/10.1002/macp.1961.020430121

[84] Higashihara, G.; Okoshi, A. Aromatic hydrocarbon formaldehyde resin, modified aromatic hydrocarbon formaldehyde resin and epoxy resin, and method for producing these. US 9725551 B2, August 08, 2017.

[85] Moshchynska, N. K. Polimerni materialy na osnovi aromatychnykh vuhlevodniv i formaldehidu; Technika: Kyiv, 1970.

[86] Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O.; Poliak, O.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 3. Tar Modified with Formaldehyde. Chem. Chem. Technol. 2021, 15, 608-620. https://doi.org/10.23939/chcht15.04.608
https://doi.org/10.23939/chcht15.04.608

[87] Gunka, V.; Bilushchak, H.; Prysiazhnyi, Y.; Demchuk, Y.; Hrynchuk, Y.; Sidun, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 4. Determining the Optimal Conditions for Tar Modification with Formaldehyde and Properties of the Modified Products. Chem. Chem. Technol. 2022, 16, 142-149. https://doi.org/10.23939/chcht16.01.142
https://doi.org/10.23939/chcht16.01.142

[88] Gunka, V.; Hrynchuk, Y.; Demchuk, Yu.; Donchenko, M.; Prysiazhnyi, Y.; Reutskyy, V.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 7. Study of the Structure of Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 211-220. https://doi.org/10.23939/chcht17.01.211
https://doi.org/10.23939/chcht17.01.211

[89] Gunka, V.; Donchenko, M.; Demchuk, Yu.; Drapak, I.; Bratychak, M. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 8. Prospects of Using Formaldehyde Modified Tars in Road Construction. Chem. Chem. Technol. 2023, 17, 701-710. https://doi.org/10.23939/chcht17.03.701
https://doi.org/10.23939/chcht17.03.701

[90] Gunka, V.; Sidun, I.; Poliak, O.; Demchuk, Y.; Prysiazhnyi, Y.; Hrynchuk, Y.; Drapak, I.; Astakhova, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 9. Stone Mastic Asphalt Using Formaldehyde Modified Tars. Chem. Chem. Technol. 2023, 17, 916-922. https://doi.org/10.23939/chcht17.04.916
https://doi.org/10.23939/chcht17.04.916

[91] Pstrowska, K.; Gunka, V.; Prysiazhnyi, Yu.; Demchuk, Yu.; Hrynchuk, Yu.; Sidun, Iu.; Kułażyński, M.; Bratychak, M. Obtaining of Formaldehyde Modified Tars and Road Materials on Their Basis. Materials 2022, 15, 5693. https://doi.org/10.3390/ma15165693
https://doi.org/10.3390/ma15165693

[92] Bratychak, M.; Gunka, V.; Prysiazhnyi, Y.; Hrynchuk, Y.; Sidun, I.; Demchuk, Y.; Shyshchak, O. Production of Bitumen Modified with Low-Molecular Organic Compounds from Petroleum Residues. 1. Effect of Solvent Nature on the Properties of Petroleum Residues Modified with Folmaldehyde. Chem. Chem. Technol. 2021, 15, 274-283. https://doi.org/10.23939/chcht15.02.274
https://doi.org/10.23939/chcht15.02.274

[93] Gunka, V.; Sidun, I.; Solodkyy, S.; Vytrykush, N. Hot Asphalt Concrete with Application of Formaldehyde Modified Bitumen. Lect. Notes Civ. Eng. 2019, 47, 111-118. https://doi.org/10.1007/978-3-030-27011-7_14
https://doi.org/10.1007/978-3-030-27011-7_14

[94] Gunka, V.; Hidei, V.; Sidun, I.; Demchuk, Y.; Stadnik, V.; Shapoval, P.; Sobol, Kh.; Vytrykush, N.; Bratychak, M. Wastepaper Sludge Ash and Acid Tar as Activated Filler Aggregates for Stone Mastic Asphalt. Coatings 2023, 13, 1183. https://doi.org/10.3390/coatings13071183
https://doi.org/10.3390/coatings13071183

[95] Gunka, V.; Demchuk, Y.; Drapak, I.; Korchak, B.; Bratychak, M. Kinetic Model of the Process of Polycondensation of Concentrated Phenols of Coal Tar with Formaldehyde. Chem. Chem. Technol. 2023, 17, 339-346. https://doi.org/10.23939/chcht17.02.339
https://doi.org/10.23939/chcht17.02.339

[96] DSTU 4044:2019 Petroleum road viscous bitumen. Technical conditions.

[97] DSTU 9116:2021 Bitumen and bitumen binders. Road bitumen modified with polymers. Technical conditions.

[98] SOU 42.1-37641918-068:2017 Viscous road bitumen modified with wax-based additives. Technical conditions.

[99] SOU 45.2-00018112-067:2011 Construction materials. Viscous road bitumen modified with adhesive additives. Technical conditions. Amendment No. 1.