Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Дослідження біодеградабельних плівок на основі крохмалю та визначення деяких їхніх фізико-хімічних характеристик

Olha Fedoryshyn1, Veronika Chervetsova1, Olena Yaremkevych1, Yuliya Skril1,2, Semen Khomyak1, Ananiy Kohut1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., 79013 Lviv, Ukraine 2 JUNIA, 2 rue Norbert Ségard BP 41290, 59014 Lille cedex, France olha.m.fedoryshyn@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.03.417
AttachmentSize
PDF icon full_text.pdf611.84 KB
Abstract: 
Проведено дослідження з виготовлення в лабораторних умовах експериментальних біодеградабельних плівок (ЕБП) та проаналізовано рецептури з крохмалю кукурудзяного та картопляного з 8, 10 та 15%-вим вмістом. З’ясовано, що ЕБП на основі картопляного крохмалю з концентрацією 10% є більш пластичний і добре зберігає форму, порівняно з іншими зразками. Проведені мікробіологічні, механічні, фізико-хімічні, ІЧ-спектроскопічні дослідження ЕБП та біодеградабельного пластику (БП), доступного на ринку у формі пакувальних пакетів (БП з «АТБ», БП з «Сільпо», БП з «Roshen»). Проведено виділення нагромаджувальних культур з ґрунту та їхню ідентифікацію мікроскопуванням фіксованих мікропрепаратів. Експериментально досліджено і встановлено здатність виділених культур мікроорганізмів до біодеградації ЕБП та опрацьовано специфіку біодеградації ЕБП в результаті діяльності мікроорганізмів різних таксономічних груп.
References: 

[1] Santana, R.F.; Bonomo, R.C.F.; Gandolfi, O.R.R.; Rodrigues, L.B.; Santos, L.S.; dos Santos Pires, A.C.; de Oliveira, C.P.; da Costa Ilhéu Fontan, R.; Veloso, C.M. Characterization of Starch-Based Bioplastics from Jackfruit Seed Plasticized with Glycerol. J. Food Sci. Technol. 2018, 55, 278–286. https://doi.org/10.1007/s13197-017-2936-6
[2] Avérous, L. Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. J. Macromol. Sci. C 2004, 44, 231–274. https://doi.org/10.1081/MC-200029326
[3] Lap, M.O.; Kanbur, Y. Tayfun, Ü. The Use of Mussel Shell as a Bio-Additive for Poly (Lactic Acid) Based Green Composites. Chem. Chem. Technol. 2021, 15, 621–626. https://doi.org/10.23939/chcht15.04.621
[4] Miroshnichenko, D.; Lebedeva, K.; Cherkashina, A.; Lebedev, V.; Tsereniuk, O.; Krygina, N. Study of Hybrid Modification with Humic Acids of Environmentally Safe Biodegradable Hydrogel Films Based on Hydroxypropyl Methylcellulose. C 2022, 8, 71. https://doi.org/10.3390/c8040071
[5] Zeng, S.H.; Duan, P.P.; Shen, M.X.; Xue, Y.J.; Wang, Z.Y. Preparation and Degradation Mechanisms of Biodegradable Polymer: A Review. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 137, 012003. https://doi.org/10.1088/1757-899X/137/1/012003
[6] Lebedev, V.; Tykhomyrova, T.; Litvinenko, I.; Avina, S.; Saimbetova, Z. Design and Research of Eco-Friendly Polymer Composites. Mater. Sci. Forum 2020, 1006, 259–266. https://doi.org/10.4028/www.scientific.net/MSF.1006.259
[7] Lebedev, V.; Tykhomyrova, T.; Filenko, O.; Cherkashina, A.; Lytvynenko, O. Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums. Mater. Sci. Forum 2021, 1038, 168–174. https://doi.org/10.4028/www.scientific.net/MSF.1038.168
[8] Lebedev, V.; Miroshnichenko, D.; Bilets, D.; Mysiak, V. Investigation of Hybrid Modification of Eco-Friendly Polymers by Humic Substances. Solid State Phenom. 2022, 334, 154–161. https://doi.org/10.4028/p-gv30w7
[9] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357–364. https://doi.org/10.23939/chcht17.02.357
[10] European Commission, Directorate-General for Research and Innovation, Biodegradability of Plastics in the Open Environment, Publications Office of the European Union, 2021. https://data.europa.eu/doi/10.2777/690248
[11] Rouilly, A.; Rigal, L. Agro-Materials: A Bibliographic Review. J. Macromol. Sci. C 2002, 42, 441–479. https://doi.org/10.1081/MC-120015987
[12] Creton, C. Molecular Stitches for Enhanced Recycling of Packaging. Science 2017, 355, 797–798. https://doi.org/10.1126/science.aam5803
[13] Guzman, A.; Gnutek, N.; Janik, H. Biodegradable Polymers for Food Packing – Factors Influencing their Degradation and Certification Types – a Comprehensive Review. Chem. Chem. Technol. 2011, 5, 115–122. https://doi.org/10.23939/chcht05.01.115
[14] Kostiuk, T. 2022: State in Transitional Era in Transitional Area. Skhid 2022, 3, 28–32. https://doi.org/10.21847/1728-9343.2022.3(2).262533
[15] Kumar, S.; Mukherjee, A.; Dutta, J. Biopolymer-Based Food Packaging: Innovations and Technology Applications; Wiley, 2022.
[16] Razimowicz, M.; Gnatowski, P.; Szarlej, P.; Piłat, E.; Sienkiewicz, M.; Kucińska-Lipka, J. Developing Materials for Biodegradable Otolaryngological Stents. Chem. Chem. Technol. 2023, 17, 24–34. https://doi.org/10.23939/chcht17.01.024
[17] Krzan, A.; Hemjinda, S.; Miertus, S.; Corti, A.; Chiellini, E. Standardization and Certification in the Area of Environmentally Degradable Plastics. Polym. Degrad. Stab. 2006, 91, 2819–2833. https://doi.org/10.1016/j.polymdegradstab.2006.04.034
[18] Kapanen, A.; Schettini, E.; Vox, G.; Itävaara, M. Performance and Environmental Impact of Biodegradable Films in Agriculture: A Field Study on Protected Cultivation. J. Polym. Environ. 2008, 16, 109–122. https://doi.org/10.1007/s10924-008-0091-x
[19] Bera, H.; Hossain, C.M.; Saha, S. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications, 1st ed.; Academic Press, 2021.
[20] Aquavia, M.A.; Pascale, R.; Martelli, G.; Bondoni, M.; Bianco, G. Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector. Polymers 2021, 13, 158. https://doi.org/10.3390/polym13010158
[21] Savaris, M.; dos Santos, V.; Brandalise, R.N. Influence of Different Sterilization Processes on the Properties of Commercial Poly (Lactic Acid). Mater. Sci. Eng. C 2016, 69, 661–667. https://doi.org/10.1016/j.msec.2016.07.031
[22] Thomas, S.; Gopi, S.; Amalraj, A. Biopolymers and Their Industrial Applications: From Plant, Animal, and Marine Sources to Functional Products; Elsevier, 2021. https://doi.org/10.1016/C2018-0-05189-0
[23] Voronov, A.; Vasylyev, S.; Kohut, A.; Peukert, W. Surface Activity of New Invertible Amphiphilic Polyesters Based on Poly(ethylene glycol) and Aliphatic Dicarboxylic Acids. J. Colloid Interface Sci. 2008, 323, 379–385. https://doi.org/10.1016/j.jcis.2008.04.053
[24] Yaremkevych, O.; Fihurka, O.; Banya, A.; Shvets, V.; Nakonechna, A.; Karpenko, O.; Bilushchak, H.; Karpenko, O.; Novikov, V.; Lubenets, V. Effect of Thiosulfonate-Biosurfactant Compositions on Plants Grown in Oil Polluted Soil. Environ. Eng. Manag. J. 2020, 19, 2003–2012. http://www.eemj.icpm.tuiasi.ro/pdfs/vol19/no11/Full/7_595_Yaremkevych_19...
[25] Faisal, M.; Mousa, M.A.; ElHussieny, A.; Everitt, N.M.; Kaushik Pal, Fahim, I.S. Experimental Investigation of Innovative Active Packaging Biofilms Using Electrical Impedance Spectroscopy. J. Mol. Struct. 2021, 1230, 129648. https://doi.org/10.1016/j.molstruc.2020.129648
[26] Abdullah, A.H.D.; Pudjiraharti, S.; Karina, M.; Putri, O.D.; Fauziyyah, R.H. Fabrication and Characterization of Sweet Potato Starch-based Bioplastics Plasticized with Glycerol. J. Biol. Sci. 2019, 19, 57–64. https://doi.org/10.3923/jbs.2019.57.64
[27] DSTU EN ISO 8067:2018 (National Standard of Ukraine) Polymer porous elastic materials. The method of determining strength during tearing (EN ISO 8067:2018, IDT; ISO 8067:2018, IDT).
[28] DSTU EN ISO 8256:2017 (National Standard of Ukraine) Plastics. Determination of tensile strength (EN ISO 8256:2004, IDT; ISO 8256:2004, IDT).
[29] Rindlav-Westling, Å.; Stading, M.; Hermansson, A.M.; Gatenholm, P. Structure, Mechanical and Barrier Properties of Amylose and Amylopectin Films. Carbohydr. Polym. 1998, 36, 217–224. https://doi.org/10.1016/S0144-8617(98)00025-3
[30] Nasir, N.N.; Othman, S.A. The Physical and Mechanical Properties of Corn-Based Bioplastic Films with Different Starch and Glycerol Content. J. Phys. Sci. 2021, 32, 89–101. https://doi.org/10.21315/jps2021.32.3.7
[31] Fang, J.M.; Fowler, P.A.; Sayers, C.; Williams, P.A. The Chemical Modification of a Range of Starches under Aqueous Reaction Conditions. Carbohydr. Polym. 2004, 55, 283–289. https://doi.org/10.1016/j.carbpol.2003.10.003