Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Physico-Chemical and Microbiological Characterization of Starch-Based Biodegradable Films

Olha Fedoryshyn1, Veronika Chervetsova1, Olena Yaremkevych1, Yuliya Skril1,2, Semen Khomyak1, Ananiy Kohut1
Affiliation: 
1 Lviv Polytechnic National University, 12 S.Bandery St., 79013 Lviv, Ukraine 2 JUNIA, 2 rue Norbert Ségard BP 41290, 59014 Lille cedex, France olha.m.fedoryshyn@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.03.417
AttachmentSize
PDF icon full_text.pdf611.84 KB
Abstract: 
Research on the manufacturing of experimental biodegradable films (EBF) was carried out in the laboratory. Recipes containing 8, 10, and 15% of corn and potato starch were analyzed. It was found that the EBF based on potato starch with a 10% concentration is more plastic and retains its shape well compared to other samples. Microbiological, mechanical, physicochemical, and infrared spectroscopic studies of the EBF and the biodegradable plastics (BP) available on the market in the form of packaging bags that are positioned as biodegradable (BP from ATB, BP from Silpo, BP from Roshen) were performed. The isolation of enrichment soil microbial cultures and their identification by microscopy of permanent mounts were studied. The ability of the isolated microbial cultures to biodegrade starch-based EBFs was experimentally investigated and determined, as well as the peculiarities of biodegradation of starch-based EBFs and BPs, as a result of the activity of microorganisms of different taxonomic groups, were studied.
References: 

[1] Santana, R.F.; Bonomo, R.C.F.; Gandolfi, O.R.R.; Rodrigues, L.B.; Santos, L.S.; dos Santos Pires, A.C.; de Oliveira, C.P.; da Costa Ilhéu Fontan, R.; Veloso, C.M. Characterization of Starch-Based Bioplastics from Jackfruit Seed Plasticized with Glycerol. J. Food Sci. Technol. 2018, 55, 278-286. https://doi.org/10.1007/s13197-017-2936-6
https://doi.org/10.1007/s13197-017-2936-6

[2] Avérous, L. Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. J. Macromol. Sci. C 2004, 44, 231-274. https://doi.org/10.1081/MC-200029326
https://doi.org/10.1081/MC-200029326

[3] Lap, M.O.; Kanbur, Y. Tayfun, Ü. The Use of Mussel Shell as a Bio-Additive for Poly (Lactic Acid) Based Green Composites. Chem. Chem. Technol. 2021, 15, 621-626. https://doi.org/10.23939/chcht15.04.621
https://doi.org/10.23939/chcht15.04.621

[4] Miroshnichenko, D.; Lebedeva, K.; Cherkashina, A.; Lebedev, V.; Tsereniuk, O.; Krygina, N. Study of Hybrid Modification with Humic Acids of Environmentally Safe Biodegradable Hydrogel Films Based on Hydroxypropyl Methylcellulose. C 2022, 8, 71. https://doi.org/10.3390/c8040071
https://doi.org/10.3390/c8040071

[5] Zeng, S.H.; Duan, P.P.; Shen, M.X.; Xue, Y.J.; Wang, Z.Y. Preparation and Degradation Mechanisms of Biodegradable Polymer: A Review. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 137, 012003. https://doi.org/10.1088/1757-899X/137/1/012003
https://doi.org/10.1088/1757-899X/137/1/012003

[6] Lebedev, V.; Tykhomyrova, T.; Litvinenko, I.; Avina, S.; Saimbetova, Z. Design and Research of Eco-Friendly Polymer Composites. Mater. Sci. Forum 2020, 1006, 259-266. https://doi.org/10.4028/www.scientific.net/MSF.1006.259
https://doi.org/10.4028/www.scientific.net/MSF.1006.259

[7] Lebedev, V.; Tykhomyrova, T.; Filenko, O.; Cherkashina, A.; Lytvynenko, O. Sorption Resistance Studying of Environmentally Friendly Polymeric Materials in Different Liquid Mediums. Mater. Sci. Forum 2021, 1038, 168-174. https://doi.org/10.4028/www.scientific.net/MSF.1038.168
https://doi.org/10.4028/www.scientific.net/MSF.1038.168

[8] Lebedev, V.; Miroshnichenko, D.; Bilets, D.; Mysiak, V. Investigation of Hybrid Modification of Eco-Friendly Polymers by Humic Substances. Solid State Phenom. 2022, 334, 154-161. https://doi.org/10.4028/p-gv30w7
https://doi.org/10.4028/p-gv30w7

[9] Lebedev, V.; Miroshnichenko, D.; Pyshyev, S.; Kohut, A. Study of Hybrid Humic Acids Modification of Environmentally Safe Biodegradable Films Based on Hydroxypropyl Methyl Cellulose. Chem. Chem. Technol. 2023, 17, 357-364. https://doi.org/10.23939/chcht17.02.357
https://doi.org/10.23939/chcht17.02.357

[10] European Commission, Directorate-General for Research and Innovation, Biodegradability of Plastics in the Open Environment, Publications Office of the European Union, 2021. https://data.europa.eu/doi/10.2777/690248

[11] Rouilly, A.; Rigal, L. Agro-Materials: A Bibliographic Review. J. Macromol. Sci. C 2002, 42, 441-479. https://doi.org/10.1081/MC-120015987
https://doi.org/10.1081/MC-120015987

[12] Creton, C. Molecular Stitches for Enhanced Recycling of Packaging. Science 2017, 355, 797-798. https://doi.org/10.1126/science.aam5803
https://doi.org/10.1126/science.aam5803

[13] Guzman, A.; Gnutek, N.; Janik, H. Biodegradable Polymers for Food Packing - Factors Influencing their Degradation and Certification Types - a Comprehensive Review. Chem. Chem. Technol. 2011, 5, 115-122. https://doi.org/10.23939/chcht05.01.115
https://doi.org/10.23939/chcht05.01.115

[14] Kostiuk, T. 2022: State in Transitional Era in Transitional Area. Skhid 2022, 3, 28-32. https://doi.org/10.21847/1728-9343.2022.3(2).262533
https://doi.org/10.21847/1728-9343.2022.3(2).262533

[15] Kumar, S.; Mukherjee, A.; Dutta, J. Biopolymer-Based Food Packaging: Innovations and Technology Applications; Wiley, 2022.
https://doi.org/10.1002/9781119702313

[16] Razimowicz, M.; Gnatowski, P.; Szarlej, P.; Piłat, E.; Sienkiewicz, M.; Kucińska-Lipka, J. Developing Materials for Biodegradable Otolaryngological Stents. Chem. Chem. Technol. 2023, 17, 24-34. https://doi.org/10.23939/chcht17.01.024
https://doi.org/10.23939/chcht17.01.024

[17] Krzan, A.; Hemjinda, S.; Miertus, S.; Corti, A.; Chiellini, E. Standardization and Certification in the Area of Environmentally Degradable Plastics. Polym. Degrad. Stab. 2006, 91, 2819-2833. https://doi.org/10.1016/j.polymdegradstab.2006.04.034
https://doi.org/10.1016/j.polymdegradstab.2006.04.034

[18] Kapanen, A.; Schettini, E.; Vox, G.; Itävaara, M. Performance and Environmental Impact of Biodegradable Films in Agriculture: A Field Study on Protected Cultivation. J. Polym. Environ. 2008, 16, 109-122. https://doi.org/10.1007/s10924-008-0091-x
https://doi.org/10.1007/s10924-008-0091-x

[19] Bera, H.; Hossain, C.M.; Saha, S. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications, 1st ed.; Academic Press, 2021.
https://doi.org/10.1016/B978-0-12-820874-8.00002-6

[20] Aquavia, M.A.; Pascale, R.; Martelli, G.; Bondoni, M.; Bianco, G. Natural Polymeric Materials: A Solution to Plastic Pollution from the Agro-Food Sector. Polymers 2021, 13, 158. https://doi.org/10.3390/polym13010158
https://doi.org/10.3390/polym13010158

[21] Savaris, M.; dos Santos, V.; Brandalise, R.N. Influence of Different Sterilization Processes on the Properties of Commercial Poly (Lactic Acid). Mater. Sci. Eng. C 2016, 69, 661-667. https://doi.org/10.1016/j.msec.2016.07.031
https://doi.org/10.1016/j.msec.2016.07.031

[22] Thomas, S.; Gopi, S.; Amalraj, A. Biopolymers and Their Industrial Applications: From Plant, Animal, and Marine Sources to Functional Products; Elsevier, 2021. https://doi.org/10.1016/C2018-0-05189-0
https://doi.org/10.1016/C2018-0-05189-0

[23] Voronov, A.; Vasylyev, S.; Kohut, A.; Peukert, W. Surface Activity of New Invertible Amphiphilic Polyesters Based on Poly(ethylene glycol) and Aliphatic Dicarboxylic Acids. J. Colloid Interface Sci. 2008, 323, 379-385. https://doi.org/10.1016/j.jcis.2008.04.053
https://doi.org/10.1016/j.jcis.2008.04.053

[24] Yaremkevych, O.; Fihurka, O.; Banya, A.; Shvets, V.; Nakonechna, A.; Karpenko, O.; Bilushchak, H.; Karpenko, O.; Novikov, V.; Lubenets, V. Effect of Thiosulfonate-Biosurfactant Compositions on Plants Grown in Oil Polluted Soil. Environ. Eng. Manag. J. 2020, 19, 2003-2012. http://www.eemj.icpm.tuiasi.ro/pdfs/vol19/no11/Full/7_595_Yaremkevych_19...
https://doi.org/10.30638/eemj.2020.189

[25] Faisal, M.; Mousa, M.A.; ElHussieny, A.; Everitt, N.M.; Kaushik Pal, Fahim, I.S. Experimental Investigation of Innovative Active Packaging Biofilms Using Electrical Impedance Spectroscopy. J. Mol. Struct. 2021, 1230, 129648. https://doi.org/10.1016/j.molstruc.2020.129648
https://doi.org/10.1016/j.molstruc.2020.129648

[26] Abdullah, A.H.D.; Pudjiraharti, S.; Karina, M.; Putri, O.D.; Fauziyyah, R.H. Fabrication and Characterization of Sweet Potato Starch-based Bioplastics Plasticized with Glycerol. J. Biol. Sci. 2019, 19, 57-64. https://doi.org/10.3923/jbs.2019.57.64
https://doi.org/10.3923/jbs.2019.57.64

[27] DSTU EN ISO 8067:2018 (National Standard of Ukraine) Polymer porous elastic materials. The method of determining strength during tearing (EN ISO 8067:2018, IDT; ISO 8067:2018, IDT).

[28] DSTU EN ISO 8256:2017 (National Standard of Ukraine) Plastics. Determination of tensile strength (EN ISO 8256:2004, IDT; ISO 8256:2004, IDT).

[29] Rindlav-Westling, Å.; Stading, M.; Hermansson, A.M.; Gatenholm, P. Structure, Mechanical and Barrier Properties of Amylose and Amylopectin Films. Carbohydr. Polym. 1998, 36, 217-224. https://doi.org/10.1016/S0144-8617(98)00025-3
https://doi.org/10.1016/S0144-8617(98)00025-3

[30] Nasir, N.N.; Othman, S.A. The Physical and Mechanical Properties of Corn-Based Bioplastic Films with Different Starch and Glycerol Content. J. Phys. Sci. 2021, 32, 89-101. https://doi.org/10.21315/jps2021.32.3.7
https://doi.org/10.21315/jps2021.32.3.7

[31] Fang, J.M.; Fowler, P.A.; Sayers, C.; Williams, P.A. The Chemical Modification of a Range of Starches under Aqueous Reaction Conditions. Carbohydr. Polym. 2004, 55, 283-289. https://doi.org/10.1016/j.carbpol.2003.10.003
https://doi.org/10.1016/j.carbpol.2003.10.003