Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Деградація конго червоного з використанням перйодату, активованого ультразвуком і залізом(II)

Yuriy Sukhatskiy1, Mariana Shepida1, Martyn Sozanskyi1, Zenovii Znak1
Affiliation: 
1 Lviv Polytechnic National University, 12, S. Bandery St., Lviv, 79013, Ukraine yurii.v.sukhatskyi@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.03.321
AttachmentSize
PDF icon full_text.pdf1.13 MB
Abstract: 
Перйодат, активований комбінацією ультразвуку та Fe(II), було використано для окиснювальної деградації аніонного діазобарвника конго червоного (КЧ). Проаналізовано вплив основних факторів (початкового рН, мольного співвідношення КЧ:KIO4:FeSO4, кількості Fe(II), питомої потужності ультразвукового кавітаційного оброблення) на ефективність його деградації.
References: 

[1] Sistla, S.; Chintalapati, S. Sonochemical Degradation of Congo Red. Int. J. Environ. Waste Manag. 2008, 2, 309–319. https://doi.org/10.1504/IJEWM.2008.018251
[2] Sukhatskiy, Y.; Znak, Z.; Zin, O.; Chupinskyi, D. Ultrasonic Cavitation in Wastewater Treatment from Azo Dye Methyl Orange. Chem. Chem. Technol. 2021, 15, 284–290. https://doi.org/10.23939/chcht15.02.284
[3] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Khomyak, S.V.; Mnykh, R.V.; Lysenko, A.V. The Decomposition of the Benzene in Cavitation Fields. Vopr. Khimii i Khimicheskoi Tekhnologii 2018, 1, 72–77.
[4] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Vyrsta, K.R. The Intensification of the Cavitation Decomposition of Benzene. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 4, 55–61. https://doi.org/10.32434/0321-4095-2019-125-4-55-61
[5] Swan, N.B.; Zaini, M.A.A. Adsorption of Malachite Green and Congo red Dyes from Water: Recent Progress and Future Outlook. Ecol. Chem. Eng. S 2019, 26, 119–132. https://doi.org/10.1515/eces-2019-0009
[6] Bhat, S.A.; Zafar, F.; Mondal, A.H.; Kareem, A.; Mirza, A.U.; Khan, S.; Mohammad, A.; Haq, Q.M.R.; Nishat, N. Photocatalytic Degradation of Carcinogenic Congo red Dye in Aqueous Solution, Antioxidant Activity and Bactericidal Effect of NiO Nanoparticles. J. Iran. Chem. Soc. 2020, 17, 215–227. https://doi.org/10.1007/s13738-019-01767-3
[7] Yaneva, Z.L.; Georgieva, N.V. Insights into Congo red Adsorption on Agro-Industrial Materials Spectral, Equilibrium, Kinetic, Thermodynamic, Dynamic and Desorption Studies. A Review. Int. Rev. Chem. Eng. 2012, 4, 127–146.
[8] Chine, S.S.; Korake, S.R.; Patil, C.S. Congo red Dye Removal from Aqueous Solution Using Low Cost Adsorbent. Int. J. Mod. Trends Eng. Res. 2015, 2, 787–793.
[9] Igwegbe, C.A.; Onukwuli, O.D.; Ighalo, J.O.; Okoye, P.U. Adsorption of Cationic Dyes on Dacryodes Edulis Seeds Activated Carbon Modified Using Phosphoric Acid and Sodium Chloride. Environ. Process. 2020, 7, 1151–1171. https://doi.org/10.1007/s40710-020-00467-y
[10] Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. Adsorption of an Anionic Dye (Congo red) from Aqueous Solutions by Pine Bark. Sci. Rep. 2019, 9, 16530. https://doi.org/10.1038/s41598-019-53046-z
[11] Hou, F.; Wang, D.; Ma, X.; Fan, L.; Ding, T.; Ye, X.; Liu, D. Enhanced Adsorption of Congo red Using Chitin Suspension after Sonoenzymolysis. Ultrason. Sonochem. 2021, 70, 105327. https://doi.org/10.1016/j.ultsonch.2020.105327
[12] Zourou, A.; Ntziouni, A.; Adamopoulos, N.; Roman, T.; Zhang, F.; Terrones, M.; Kordatos, K. Graphene Oxide-CuFe2O4 Nanohybrid Material as an Adsorbent of Congo red Dye. Carbon Trends 2022, 7, 100147. https://doi.org/10.1016/j.cartre.2022.100147
[13] Kumar, N.; Khandegar, V.; Acharya, S. Optimization of Congo red Dye by Iron Oxide@AC. In Artificial Intelligence and Sustainable Computing. Algorithms for Intelligent Systems; Springer: Singapore, 2022; pp 109–115. https://doi.org/10.1007/978-981-16-1220-6_10
[14] Bhat, S.A.; Zafar, F.; Mirza, A.U.; Mondal, A.H.; Kareem, A.; Haq, Q.M.R.; Nishat, N. NiO Nanoparticle Doped-PVA-MF Polymer Nanocomposites: Preparation, Congo red Dye Adsorption and Antibacterial Activity. Arab. J. Chem. 2020, 13, 5724–5739. https://doi.org/10.1016/j.arabjc.2020.04.011
[15] Landge, V.K.; Huang, C.-M.; Hakke, V.S.; Sonawane, S.H.; Manickam, S.; Hsieh, M.-C. Solar-Energy-Driven Cu-ZnO/TiO2 Nanocomposite Photocatalyst for the Rapid Degradation of Congo red Azo Dye. Catal. 2022, 12, 605. https://doi.org/10.3390/catal12060605
[16] Ryltsova, I.; Tarasenko, E.; Lebedeva, O. Photodecolourization of Congo red Dye in Presence of Ni3+ Layered Double Hydroxide. BIO Web Conf. 2021, 30, 02010. https://doi.org/10.1051/bioconf/20213002010
[17] Said, M.; Rizki, W.T.; Asri, W.R.; Desnelli, D.; Rachmat, A.; Hariani, P.L. SnO2-Fe3O4 Nanocomposites for the Photodegradation of the Congo red Dye. Heliyon 2022, 8, e09204. https://doi.org/10.1016/j.heliyon.2022.e09204
[18] Hitkari, G.; Ghowdhary, P.; Kumar, V.; Singh, S.; Motghare, A. Potential of Copper-Zinc Oxide Nanocomposite for Photocatalytic Degradation of Congo red Dye. Clean. Chem. Eng. 2022, 1, 100003. https://doi.org/10.1016/j.clce.2022.100003
[19] Padervand, M.; Mazloum, M.; Bargahi, A.; Arsalani, N. CQDs/BiOCl Photocatalysts for the Efficient Treatment of Congo red Aqueous Solution under Visible Light. J. Nanostruct. 2021, 11, 790–801. https://doi.org/10.22052/JNS.2021.04.016
[20] Yang, Y.; Liu, K.; Sun, F.; Liu, Y.; Chen, J. Enhanced Performance of Photocatalytic Treatment of Congo red Wastewater by CNTs-Ag-modified TiO2 under Visible Light. Environ. Sci. Pollut. Res. 2022, 29, 15516–15525. https://doi.org/10.1007/s11356-021-16734-w
[21] Tapalad, T.; Neramittagapong, A.; Neramittagapong, S.; Boonmee, M. Degradation of Congo red Dye by Ozonation. Chiang Mai J. Sci. 2008, 35, 63–68.
[22] Luo, C.; Wu, D.; Gan, L.; Cheng, X.; Ma, Q.; Tan, F.; Gao, J.; Zhou, W.; Wang, S.; Zhang, F. et al. Oxidation of Congo red by Thermally Activated Persulfate Process: Kinetics and Transformation Pathway. Sep. Purif. Technol. 2020, 244, 116839. https://doi.org/10.1016/j.seppur.2020.116839
[23] Abbas-Shiroodi, Z.; Sadeghi, M.-T.; Baradaran, S. Design and Optimization of a Cavitating Device for Congo red Decolorization: Experimental Investigation and CFD Simulation. Ultrason. Sonochem. 2021, 71, 105386. https://doi.org/10.1016/j.ultsonch.2020.105386
[24] Deshmukh, S.M.; Raut, V.N.; Ingole, P.M. Degradation of Congo red Dye Using Hydrodynamic Cavitation. Int. J. Adv. Res. 2020, 8, 1294–1299. http://dx.doi.org/10.21474/IJAR01/11788
[25] Nasron, A.N.; Azman, N.S.; Rashid, N.S.S.M.; Said, N.R. Degradation of Congo red Dye in Aqueous Solution by Using Advanced Oxidation Processes. J. Acad. 2018, 6, 1–11.
[26] Ma, P.; Han, C.; He, Q.; Miao, Z.; Gao, M.; Wan, K.; Xu, E. Oxidation of Congo red by Fenton Coupled with Micro and Nanobubbles. Environ. Technol. 2023, 44, 2539–2548. https://doi.org/10.1080/09593330.2022.2036245
[27] Meshram, S.P.; Tayade, D.T.; Ingle, P.D.; Jolhe, P.D.; Diwate, B.B.; Biswas, S.B. Ultrasonic Cavitation Induced Degradation of Congo red in Aqueous Solutions. Chem. Eng. Res. Bull. 2010, 14, 119–123. https://doi.org/10.3329/cerb.v14i2.5899
[28] Nawaz, S.; Siddique, M.; Khan, R. Ultrasound-assisted Hydrogen Peroxide and Iron Sulfate Mediated Fenton Process as an Efficient Advanced Oxidation Process for the Removal of Congo red Dye. Pol. J. Environ. Stud. 2022, 31, 2749–2761. https://doi.org/10.15244/pjoes/144298
[29] Chadi, N.E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. H2O2/periodate (IO4-): A Novel Advanced Oxidation Technology for the Degradation of Refractory Organic Pollutants. Environ. Sci.: Water Res. Technol. 2019, 5, 1113–1123. https://doi.org/10.1039/C9EW00147F
[30] Chadi, N.E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. Influence of Mineral Water Constituents, Organic Matter and Water Matrices on the Performance of the H2O2/IO4--advanced Oxidation Process. Environ. Sci.: Water Res. Technol. 2019, 5, 1985–1992. https://doi.org/10.1039/C9EW00329K
[31] Sukhatskiy, Y.; Sozanskyi, M.; Shepida, M.; Znak, Z.; Gogate, P.R. Decolorization of an Aqueous Solution of Methylene Blue Using a Combination of Ultrasound and Peroxate Process. Sep. Purif. Technol. 2022, 288, 120651. https://doi.org/10.1016/j.seppur.2022.120651
[32] Yang, L.; He, L.; Ma, Y.; Wu, L.; Zheng, L.; Wang, J.; Chen, Y.; Li, Y.; Zhang, Z. Periodate-based Oxidation Focusing on Activation, Multivariate-Controlled Performance and Mechanisms for Water Treatment and Purification. Sep. Purif. Technol. 2022, 289, 120746. https://doi.org/10.1016/j.seppur.2022.120746
[33] Zong, Y.; Shao, Y.; Zeng, Y.; Shao, B.; Xu, L.; Zhao, Z.; Liu, W.; Wu, D. Enhanced Oxidation of Organic Contaminants by iron(II)-activated Periodate: The Significance of High-Valent Iron–Oxo Species. Environ. Sci. Technol. 2021, 55, 7634–7642. https://doi.org/10.1021/acs.est.1c00375
[34] Shah, S.N.A.; Li, H.; Lin, J.-M. Enhancement of Periodate-Hydrogen Peroxide Chemiluminescence by Nitrogen Doped Carbon Dots and its Application for the Determination of Pyrogallol and Gallic Acid. Talanta 2016, 153, 23–30. https://doi.org/10.1016/j.talanta.2016.02.056
[35] Zhang, X.; Yu, X.; Yu, X.; Kamali, M.; Appels, L.; Van der Bruggen, B.; Cabooter, D.; Dewil, R. Efficiency and Mechanism of 2,4-Dichlorophenol Degradation by the UV/IO4- Process. Sci. Total Environ. 2021, 782, 146781. https://doi.org/10.1016/j.scitotenv.2021.146781
[36] Djaballah, M.L.; Merouani, S.; Bendjama, H.; Hamdaoui, O. Development of a Free Radical-Based Kinetics Model for the Oxidative Degradation of Chlorazol Black in Aqueous Solution Using Periodate Photoactivated Process. J. Photochem. Photobiol. A: Chem. 2021, 408, 113102. https://doi.org/10.1016/j.jphotochem.2020.113102
[37] Ghodbane, H.; Hamdaoui, O. Degradation of Anthraquinonic Dye in Water by Photoactivated Periodate. Desalin. Water Treat. 2016, 57, 4100–4109. https://doi.org/10.1080/19443994.2014.988657
[38] Yun, E.-T.; Yoo, H.-Y.; Kim, W.; Kim, H.-E.; Kang, G.; Lee, H.; Lee, S.; Park, T.; Lee, C.; Kim, J.-H. et al. Visible-light-induced Activation of Periodate that Mimics Dye-Sensitization of TiO2: Simultaneous Decolorization of Dyes and Production of Oxidizing Radicals. Appl. Catal. B: Environ. 2017, 203, 475–484. https://doi.org/10.1016/j.apcatb.2016.10.029
[39] Kim, H.; Yoo, H.-Y.; Hong, S.; Lee, S.; Lee, S.; Park, B.-S.; Park, H.; Lee, C.; Lee, J. Effects of Inorganic Oxidants on Kinetics and Mechanisms of WO3-mediated Photocatalytic Degradation. Appl. Catal. B: Environ. 2015, 162, 515–523. https://doi.org/10.1016/j.apcatb.2014.07.019
[40] Kayan, B.; Gözmen, B.; Demirel, M.; Gizir, A.M. Degradation of Acid Red 97 dye in Aqueous Medium Using Wet Oxidation and electro-Fenton Techniques. J. Hazard. Mater. 2010, 177, 95-102. https://doi.org/10.1016/j.jhazmat.2009.11.076
[41] Choi, Y.; Yoon, H.-I.; Lee, C.; Vetráková, L.; Heger, D.; Kim, K.; Kim, J. Activation of Periodate by Freezing for the Degradation of Aqueous Organic Pollutants. Environ. Sci. Technol. 2018, 52, 5378–5385. https://doi.org/10.1021/acs.est.8b00281
[42] Lee, Y.-C.; Chen, M.-J.; Huang, C.-P.; Kuo, J.; Lo, S.-L. Efficient Sonochemical Degradation of Perfluorooctanoic Acid Using Periodate. Ultrason. Sonochem. 2016, 31, 499–505. https://doi.org/10.1016/j.ultsonch.2016.01.030
[43] Hamdaoui, O.; Merouani, S. Improvement of Sonochemical Degradation of Brilliant blue R in Water Using Periodate Ions: Implication of Iodine Radicals in the Oxidation Process. Ultrason. Sonochem. 2017, 37, 344–350. https://doi.org/10.1016/j.ultsonch.2017.01.025
[44] Seid-Mohammadi, A.M.; Asgari, G.; Poormohammadi, A.; Ahmadian, M. Oxidation of Phenol from Synthetic Wastewater by a Novel Advance Oxidation Process: Microwave-Assisted Periodate. J. Sci. Ind. Res. 2016, 75, 267–272.
[45] Wang, Q.; Zeng, H.; Liang, Y.; Cao, Y.; Xiao, Y.; Ma, J. Degradation of Bisphenol AF in Water by Periodate Activation with FeS (mackinawite) and the Role of Sulfur Species in the Generation of Sulfate Radicals. Chem. Eng. J. 2021, 407, 126738. https://doi.org/10.1016/j.cej.2020.126738
[46] Du, J.; Xiao, G.; Xi, Y.; Zhu, X.; Su, F.; Kim, S.H. Periodate Activation with Manganese Oxides for Sulfanilamide Degradation. Water Res. 2020, 169, 115278. https://doi.org/10.1016/j.watres.2019.115278
[47] He, L.; Shi, Y.; Chen, Y.; Shen, S.; Xue, J.; Ma, Y.; Zheng, L.; Wu, L.; Zhang, Z.; Yang, L. Iron-manganese Oxide Loaded Sludge Biochar as a Novel Periodate Activator for Thiacloprid Efficient Degradation over a Wide pH Range. Sep. Purif. Technol. 2022, 288, 120703. https://doi.org/10.1016/j.seppur.2022.120703
[48] Lee, H.; Yoo, H.-Y.; Choi, J.; Nam, I.-H.; Lee, S.; Lee, S.; Kim, J.-H.; Lee, C.; Lee, J. Oxidizing Capacity of Periodate Activated with Iron-Based Bimetallic Nanoparticles. Environ. Sci. Technol. 2014, 48, 8086–8093. https://doi.org/10.1021/es5002902
[49] Seid-Mohammadi, A.; Asgari, G.; Shokoohi, R.; Baziar, M.; Mirzaei, N.; Adabi, S.; Partoei, K. Degradation of Phenol Using US/periodate/nZVI System from Aqueous Solutions. Glob. NEST J. 2019, 21, 360–367. https://doi.org/10.30955/gnj.002990
[50] Guo, D.; Yao, Y.; You, S.; Jin, L.; Lu, P.; Liu, Y. Ultrafast Degradation of Micropollutants in water via Electro-Periodate Activation Catalyzed by Nanoconfined Fe2O3. Appl. Catal. B: Environ. 2022, 309, 121289. https://doi.org/10.1016/j.apcatb.2022.121289
[51] Li, X.; Liu, X.; Qi, C.; Lin, C. Activation of Periodate by Granular Activated Carbon for Acid Orange 7 Decolorization, J. Taiwan Inst. Chem. Eng. 2016, 68, 211–217. https://doi.org/10.1016/j.jtice.2016.08.039
[52] Li, X.; Liu, X.; Lin, C.; Qi, C.; Zhang, H.; Ma, J. Enhanced Activation of Periodate by Iodine-Doped Granular Activated Carbon for Organic Contaminant Degradation. Chemosphere 2017, 181, 609–618. https://doi.org/10.1016/j.chemosphere.2017.04.134
[53] Sukhatskiy, Y.; Shepida, M.; Sozanskyi, M.; Znak, Z.; Gogate, P.R. Periodate-Based Advanced Oxidation Processes for Wastewater Treatment: A Review. Sep. Purif. Technol. 2023, 304, 122305. https://doi.org/10.1016/j.seppur.2022.122305
[54] Zhu, H.; Jiang, R.; Xiao, L.; Chang, Y.; Guan, Y.; Li, X.; Zeng, G. Photocatalytic Decolorization and Degradation of Congo red on Innovative Crosslinked Chitosan/nano-CdS Composite Catalyst under Visible Light Irradiation. J. Hazard. Mater. 2009, 169, 933–940. https://doi.org/10.1016/j.jhazmat.2009.04.037
[55] Oda, A.M.; Kadhum, S.H.; Farhood, A.S.; Alkadhum, H.A. Degradation of Congo red Solution by Zinc Oxide/Silver Composite Preheated at Different Temperatures. J. Thermodyn. Catal. 2014, 5, 1000127. https://doi.org/10.4172/2157-7544.1000127