Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Degradation of Congo Red Using Periodate, Activated by Ultrasound and Iron(II)

Yuriy Sukhatskiy1, Mariana Shepida1, Martyn Sozanskyi1, Zenovii Znak1
Affiliation: 
1 Lviv Polytechnic National University, 12, S. Bandery St., Lviv, 79013, Ukraine yurii.v.sukhatskyi@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht18.03.321
AttachmentSize
PDF icon full_text.pdf1.13 MB
Abstract: 
The periodate, activated by the combination of ultrasound and Fe(II), was used for oxidative degradation of an anionic diazo dye of congo red (CR). The effect of the main factors (the initial pH, the molar ratio of CR:KIO4:FeSO4, the amount of Fe(II), and the specific power of ultrasonic cavitation treatment) on its degradation efficiency was analyzed.
References: 

[1] Sistla, S.; Chintalapati, S. Sonochemical Degradation of Congo Red. Int. J. Environ. Waste Manag. 2008, 2, 309-319. https://doi.org/10.1504/IJEWM.2008.018251
https://doi.org/10.1504/IJEWM.2008.018251

[2] Sukhatskiy, Y.; Znak, Z.; Zin, O.; Chupinskyi, D. Ultrasonic Cavitation in Wastewater Treatment from Azo Dye Methyl Orange. Chem. Chem. Technol. 2021, 15, 284-290. https://doi.org/10.23939/chcht15.02.284
https://doi.org/10.23939/chcht15.02.284

[3] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Khomyak, S.V.; Mnykh, R.V.; Lysenko, A.V. The Decomposition of the Benzene in Cavitation Fields. Vopr. Khimii i Khimicheskoi Tekhnologii 2018, 1, 72-77.

[4] Znak, Z.O.; Sukhatskiy, Y.V.; Zin, O.I.; Vyrsta, K.R. The Intensification of the Cavitation Decomposition of Benzene. Vopr. Khimii i Khimicheskoi Tekhnologii 2019, 4, 55-61. https://doi.org/10.32434/0321-4095-2019-125-4-55-61
https://doi.org/10.32434/0321-4095-2019-125-4-55-61

[5] Swan, N.B.; Zaini, M.A.A. Adsorption of Malachite Green and Congo red Dyes from Water: Recent Progress and Future Outlook. Ecol. Chem. Eng. S 2019, 26, 119-132. https://doi.org/10.1515/eces-2019-0009
https://doi.org/10.1515/eces-2019-0009

[6] Bhat, S.A.; Zafar, F.; Mondal, A.H.; Kareem, A.; Mirza, A.U.; Khan, S.; Mohammad, A.; Haq, Q.M.R.; Nishat, N. Photocatalytic Degradation of Carcinogenic Congo red Dye in Aqueous Solution, Antioxidant Activity and Bactericidal Effect of NiO Nanoparticles. J. Iran. Chem. Soc. 2020, 17, 215-227. https://doi.org/10.1007/s13738-019-01767-3
https://doi.org/10.1007/s13738-019-01767-3

[7] Yaneva, Z.L.; Georgieva, N.V. Insights into Congo red Adsorption on Agro-Industrial Materials Spectral, Equilibrium, Kinetic, Thermodynamic, Dynamic and Desorption Studies. A Review. Int. Rev. Chem. Eng. 2012, 4, 127-146.

[8] Chine, S.S.; Korake, S.R.; Patil, C.S. Congo red Dye Removal from Aqueous Solution Using Low Cost Adsorbent. Int. J. Mod. Trends Eng. Res. 2015, 2, 787-793.

[9] Igwegbe, C.A.; Onukwuli, O.D.; Ighalo, J.O.; Okoye, P.U. Adsorption of Cationic Dyes on Dacryodes Edulis Seeds Activated Carbon Modified Using Phosphoric Acid and Sodium Chloride. Environ. Process. 2020, 7, 1151-1171. https://doi.org/10.1007/s40710-020-00467-y
https://doi.org/10.1007/s40710-020-00467-y

[10] Litefti, K.; Freire, M.S.; Stitou, M.; González-Álvarez, J. Adsorption of an Anionic Dye (Congo red) from Aqueous Solutions by Pine Bark. Sci. Rep. 2019, 9, 16530. https://doi.org/10.1038/s41598-019-53046-z
https://doi.org/10.1038/s41598-019-53046-z

[11] Hou, F.; Wang, D.; Ma, X.; Fan, L.; Ding, T.; Ye, X.; Liu, D. Enhanced Adsorption of Congo red Using Chitin Suspension after Sonoenzymolysis. Ultrason. Sonochem. 2021, 70, 105327. https://doi.org/10.1016/j.ultsonch.2020.105327
https://doi.org/10.1016/j.ultsonch.2020.105327

[12] Zourou, A.; Ntziouni, A.; Adamopoulos, N.; Roman, T.; Zhang, F.; Terrones, M.; Kordatos, K. Graphene Oxide-CuFe2O4 Nanohybrid Material as an Adsorbent of Congo red Dye. Carbon Trends 2022, 7, 100147. https://doi.org/10.1016/j.cartre.2022.100147
https://doi.org/10.1016/j.cartre.2022.100147

[13] Kumar, N.; Khandegar, V.; Acharya, S. Optimization of Congo red Dye by Iron Oxide@AC. In Artificial Intelligence and Sustainable Computing. Algorithms for Intelligent Systems; Springer: Singapore, 2022; pp 109-115. https://doi.org/10.1007/978-981-16-1220-6_10
https://doi.org/10.1007/978-981-16-1220-6_10

[14] Bhat, S.A.; Zafar, F.; Mirza, A.U.; Mondal, A.H.; Kareem, A.; Haq, Q.M.R.; Nishat, N. NiO Nanoparticle Doped-PVA-MF Polymer Nanocomposites: Preparation, Congo red Dye Adsorption and Antibacterial Activity. Arab. J. Chem. 2020, 13, 5724-5739. https://doi.org/10.1016/j.arabjc.2020.04.011
https://doi.org/10.1016/j.arabjc.2020.04.011

[15] Landge, V.K.; Huang, C.-M.; Hakke, V.S.; Sonawane, S.H.; Manickam, S.; Hsieh, M.-C. Solar-Energy-Driven Cu-ZnO/TiO2 Nanocomposite Photocatalyst for the Rapid Degradation of Congo red Azo Dye. Catal. 2022, 12, 605. https://doi.org/10.3390/catal12060605
https://doi.org/10.3390/catal12060605

[16] Ryltsova, I.; Tarasenko, E.; Lebedeva, O. Photodecolourization of Congo red Dye in Presence of Ni3+ Layered Double Hydroxide. BIO Web Conf. 2021, 30, 02010. https://doi.org/10.1051/bioconf/20213002010
https://doi.org/10.1051/bioconf/20213002010

[17] Said, M.; Rizki, W.T.; Asri, W.R.; Desnelli, D.; Rachmat, A.; Hariani, P.L. SnO2-Fe3O4 Nanocomposites for the Photodegradation of the Congo red Dye. Heliyon 2022, 8, e09204. https://doi.org/10.1016/j.heliyon.2022.e09204
https://doi.org/10.1016/j.heliyon.2022.e09204

[18] Hitkari, G.; Ghowdhary, P.; Kumar, V.; Singh, S.; Motghare, A. Potential of Copper-Zinc Oxide Nanocomposite for Photocatalytic Degradation of Congo red Dye. Clean. Chem. Eng. 2022, 1, 100003. https://doi.org/10.1016/j.clce.2022.100003
https://doi.org/10.1016/j.clce.2022.100003

[19] Padervand, M.; Mazloum, M.; Bargahi, A.; Arsalani, N. CQDs/BiOCl Photocatalysts for the Efficient Treatment of Congo red Aqueous Solution under Visible Light. J. Nanostruct. 2021, 11, 790-801. https://doi.org/10.22052/JNS.2021.04.016

[20] Yang, Y.; Liu, K.; Sun, F.; Liu, Y.; Chen, J. Enhanced Performance of Photocatalytic Treatment of Congo red Wastewater by CNTs-Ag-modified TiO2 under Visible Light. Environ. Sci. Pollut. Res. 2022, 29, 15516-15525. https://doi.org/10.1007/s11356-021-16734-w
https://doi.org/10.1007/s11356-021-16734-w

[21] Tapalad, T.; Neramittagapong, A.; Neramittagapong, S.; Boonmee, M. Degradation of Congo red Dye by Ozonation. Chiang Mai J. Sci. 2008, 35, 63-68.

[22] Luo, C.; Wu, D.; Gan, L.; Cheng, X.; Ma, Q.; Tan, F.; Gao, J.; Zhou, W.; Wang, S.; Zhang, F. et al. Oxidation of Congo red by Thermally Activated Persulfate Process: Kinetics and Transformation Pathway. Sep. Purif. Technol. 2020, 244, 116839. https://doi.org/10.1016/j.seppur.2020.116839
https://doi.org/10.1016/j.seppur.2020.116839

[23] Abbas-Shiroodi, Z.; Sadeghi, M.-T.; Baradaran, S. Design and Optimization of a Cavitating Device for Congo red Decolorization: Experimental Investigation and CFD Simulation. Ultrason. Sonochem. 2021, 71, 105386. https://doi.org/10.1016/j.ultsonch.2020.105386
https://doi.org/10.1016/j.ultsonch.2020.105386

[24] Deshmukh, S.M.; Raut, V.N.; Ingole, P.M. Degradation of Congo red Dye Using Hydrodynamic Cavitation. Int. J. Adv. Res. 2020, 8, 1294-1299. http://dx.doi.org/10.21474/IJAR01/11788
https://doi.org/10.21474/IJAR01/11788

[25] Nasron, A.N.; Azman, N.S.; Rashid, N.S.S.M.; Said, N.R. Degradation of Congo red Dye in Aqueous Solution by Using Advanced Oxidation Processes. J. Acad. 2018, 6, 1-11.

[26] Ma, P.; Han, C.; He, Q.; Miao, Z.; Gao, M.; Wan, K.; Xu, E. Oxidation of Congo red by Fenton Coupled with Micro and Nanobubbles. Environ. Technol. 2023, 44, 2539-2548. https://doi.org/10.1080/09593330.2022.2036245
https://doi.org/10.1080/09593330.2022.2036245

[27] Meshram, S.P.; Tayade, D.T.; Ingle, P.D.; Jolhe, P.D.; Diwate, B.B.; Biswas, S.B. Ultrasonic Cavitation Induced Degradation of Congo red in Aqueous Solutions. Chem. Eng. Res. Bull. 2010, 14, 119-123. https://doi.org/10.3329/cerb.v14i2.5899
https://doi.org/10.3329/cerb.v14i2.5899

[28] Nawaz, S.; Siddique, M.; Khan, R. Ultrasound-assisted Hydrogen Peroxide and Iron Sulfate Mediated Fenton Process as an Efficient Advanced Oxidation Process for the Removal of Congo red Dye. Pol. J. Environ. Stud. 2022, 31, 2749-2761. https://doi.org/10.15244/pjoes/144298
https://doi.org/10.15244/pjoes/144298

[29] Chadi, N.E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. H2O2/periodate (IO4-): A Novel Advanced Oxidation Technology for the Degradation of Refractory Organic Pollutants. Environ. Sci.: Water Res. Technol. 2019, 5, 1113-1123. https://doi.org/10.1039/C9EW00147F
https://doi.org/10.1039/C9EW00147F

[30] Chadi, N.E.; Merouani, S.; Hamdaoui, O.; Bouhelassa, M.; Ashokkumar, M. Influence of Mineral Water Constituents, Organic Matter and Water Matrices on the Performance of the H2O2/IO4--advanced Oxidation Process. Environ. Sci.: Water Res. Technol. 2019, 5, 1985-1992. https://doi.org/10.1039/C9EW00329K
https://doi.org/10.1039/C9EW00329K

[31] Sukhatskiy, Y.; Sozanskyi, M.; Shepida, M.; Znak, Z.; Gogate, P.R. Decolorization of an Aqueous Solution of Methylene Blue Using a Combination of Ultrasound and Peroxate Process. Sep. Purif. Technol. 2022, 288, 120651. https://doi.org/10.1016/j.seppur.2022.120651
https://doi.org/10.1016/j.seppur.2022.120651

[32] Yang, L.; He, L.; Ma, Y.; Wu, L.; Zheng, L.; Wang, J.; Chen, Y.; Li, Y.; Zhang, Z. Periodate-based Oxidation Focusing on Activation, Multivariate-Controlled Performance and Mechanisms for Water Treatment and Purification. Sep. Purif. Technol. 2022, 289, 120746. https://doi.org/10.1016/j.seppur.2022.120746
https://doi.org/10.1016/j.seppur.2022.120746

[33] Zong, Y.; Shao, Y.; Zeng, Y.; Shao, B.; Xu, L.; Zhao, Z.; Liu, W.; Wu, D. Enhanced Oxidation of Organic Contaminants by iron(II)-activated Periodate: The Significance of High-Valent Iron-Oxo Species. Environ. Sci. Technol. 2021, 55, 7634-7642. https://doi.org/10.1021/acs.est.1c00375
https://doi.org/10.1021/acs.est.1c00375

[34] Shah, S.N.A.; Li, H.; Lin, J.-M. Enhancement of Periodate-Hydrogen Peroxide Chemiluminescence by Nitrogen Doped Carbon Dots and its Application for the Determination of Pyrogallol and Gallic Acid. Talanta 2016, 153, 23-30. https://doi.org/10.1016/j.talanta.2016.02.056
https://doi.org/10.1016/j.talanta.2016.02.056

[35] Zhang, X.; Yu, X.; Yu, X.; Kamali, M.; Appels, L.; Van der Bruggen, B.; Cabooter, D.; Dewil, R. Efficiency and Mechanism of 2,4-Dichlorophenol Degradation by the UV/IO4- Process. Sci. Total Environ. 2021, 782, 146781. https://doi.org/10.1016/j.scitotenv.2021.146781
https://doi.org/10.1016/j.scitotenv.2021.146781

[36] Djaballah, M.L.; Merouani, S.; Bendjama, H.; Hamdaoui, O. Development of a Free Radical-Based Kinetics Model for the Oxidative Degradation of Chlorazol Black in Aqueous Solution Using Periodate Photoactivated Process. J. Photochem. Photobiol. A: Chem. 2021, 408, 113102. https://doi.org/10.1016/j.jphotochem.2020.113102
https://doi.org/10.1016/j.jphotochem.2020.113102

[37] Ghodbane, H.; Hamdaoui, O. Degradation of Anthraquinonic Dye in Water by Photoactivated Periodate. Desalin. Water Treat. 2016, 57, 4100-4109. https://doi.org/10.1080/19443994.2014.988657
https://doi.org/10.1080/19443994.2014.988657

[38] Yun, E.-T.; Yoo, H.-Y.; Kim, W.; Kim, H.-E.; Kang, G.; Lee, H.; Lee, S.; Park, T.; Lee, C.; Kim, J.-H. et al. Visible-light-induced Activation of Periodate that Mimics Dye-Sensitization of TiO2: Simultaneous Decolorization of Dyes and Production of Oxidizing Radicals. Appl. Catal. B: Environ. 2017, 203, 475-484. https://doi.org/10.1016/j.apcatb.2016.10.029
https://doi.org/10.1016/j.apcatb.2016.10.029

[39] Kim, H.; Yoo, H.-Y.; Hong, S.; Lee, S.; Lee, S.; Park, B.-S.; Park, H.; Lee, C.; Lee, J. Effects of Inorganic Oxidants on Kinetics and Mechanisms of WO3-mediated Photocatalytic Degradation. Appl. Catal. B: Environ. 2015, 162, 515-523. https://doi.org/10.1016/j.apcatb.2014.07.019
https://doi.org/10.1016/j.apcatb.2014.07.019

[40] Kayan, B.; Gözmen, B.; Demirel, M.; Gizir, A.M. Degradation of Acid Red 97 dye in Aqueous Medium Using Wet Oxidation and electro-Fenton Techniques. J. Hazard. Mater. 2010, 177, 95-102. https://doi.org/10.1016/j.jhazmat.2009.11.076
https://doi.org/10.1016/j.jhazmat.2009.11.076

[41] Choi, Y.; Yoon, H.-I.; Lee, C.; Vetráková, L.; Heger, D.; Kim, K.; Kim, J. Activation of Periodate by Freezing for the Degradation of Aqueous Organic Pollutants. Environ. Sci. Technol. 2018, 52, 5378-5385. https://doi.org/10.1021/acs.est.8b00281
https://doi.org/10.1021/acs.est.8b00281

[42] Lee, Y.-C.; Chen, M.-J.; Huang, C.-P.; Kuo, J.; Lo, S.-L. Efficient Sonochemical Degradation of Perfluorooctanoic Acid Using Periodate. Ultrason. Sonochem. 2016, 31, 499-505. https://doi.org/10.1016/j.ultsonch.2016.01.030
https://doi.org/10.1016/j.ultsonch.2016.01.030

[43] Hamdaoui, O.; Merouani, S. Improvement of Sonochemical Degradation of Brilliant blue R in Water Using Periodate Ions: Implication of Iodine Radicals in the Oxidation Process. Ultrason. Sonochem. 2017, 37, 344-350. https://doi.org/10.1016/j.ultsonch.2017.01.025
https://doi.org/10.1016/j.ultsonch.2017.01.025

[44] Seid-Mohammadi, A.M.; Asgari, G.; Poormohammadi, A.; Ahmadian, M. Oxidation of Phenol from Synthetic Wastewater by a Novel Advance Oxidation Process: Microwave-Assisted Periodate. J. Sci. Ind. Res. 2016, 75, 267-272.

[45] Wang, Q.; Zeng, H.; Liang, Y.; Cao, Y.; Xiao, Y.; Ma, J. Degradation of Bisphenol AF in Water by Periodate Activation with FeS (mackinawite) and the Role of Sulfur Species in the Generation of Sulfate Radicals. Chem. Eng. J. 2021, 407, 126738. https://doi.org/10.1016/j.cej.2020.126738
https://doi.org/10.1016/j.cej.2020.126738

[46] Du, J.; Xiao, G.; Xi, Y.; Zhu, X.; Su, F.; Kim, S.H. Periodate Activation with Manganese Oxides for Sulfanilamide Degradation. Water Res. 2020, 169, 115278. https://doi.org/10.1016/j.watres.2019.115278
https://doi.org/10.1016/j.watres.2019.115278

[47] He, L.; Shi, Y.; Chen, Y.; Shen, S.; Xue, J.; Ma, Y.; Zheng, L.; Wu, L.; Zhang, Z.; Yang, L. Iron-manganese Oxide Loaded Sludge Biochar as a Novel Periodate Activator for Thiacloprid Efficient Degradation over a Wide pH Range. Sep. Purif. Technol. 2022, 288, 120703. https://doi.org/10.1016/j.seppur.2022.120703
https://doi.org/10.1016/j.seppur.2022.120703

[48] Lee, H.; Yoo, H.-Y.; Choi, J.; Nam, I.-H.; Lee, S.; Lee, S.; Kim, J.-H.; Lee, C.; Lee, J. Oxidizing Capacity of Periodate Activated with Iron-Based Bimetallic Nanoparticles. Environ. Sci. Technol. 2014, 48, 8086-8093. https://doi.org/10.1021/es5002902
https://doi.org/10.1021/es5002902

[49] Seid-Mohammadi, A.; Asgari, G.; Shokoohi, R.; Baziar, M.; Mirzaei, N.; Adabi, S.; Partoei, K. Degradation of Phenol Using US/periodate/nZVI System from Aqueous Solutions. Glob. NEST J. 2019, 21, 360-367. https://doi.org/10.30955/gnj.002990
https://doi.org/10.30955/gnj.002990

[50] Guo, D.; Yao, Y.; You, S.; Jin, L.; Lu, P.; Liu, Y. Ultrafast Degradation of Micropollutants in water via Electro-Periodate Activation Catalyzed by Nanoconfined Fe2O3. Appl. Catal. B: Environ. 2022, 309, 121289. https://doi.org/10.1016/j.apcatb.2022.121289
https://doi.org/10.1016/j.apcatb.2022.121289

[51] Li, X.; Liu, X.; Qi, C.; Lin, C. Activation of Periodate by Granular Activated Carbon for Acid Orange 7 Decolorization, J. Taiwan Inst. Chem. Eng. 2016, 68, 211-217. https://doi.org/10.1016/j.jtice.2016.08.039
https://doi.org/10.1016/j.jtice.2016.08.039

[52] Li, X.; Liu, X.; Lin, C.; Qi, C.; Zhang, H.; Ma, J. Enhanced Activation of Periodate by Iodine-Doped Granular Activated Carbon for Organic Contaminant Degradation. Chemosphere 2017, 181, 609-618. https://doi.org/10.1016/j.chemosphere.2017.04.134
https://doi.org/10.1016/j.chemosphere.2017.04.134

[53] Sukhatskiy, Y.; Shepida, M.; Sozanskyi, M.; Znak, Z.; Gogate, P.R. Periodate-Based Advanced Oxidation Processes for Wastewater Treatment: A Review. Sep. Purif. Technol. 2023, 304, 122305. https://doi.org/10.1016/j.seppur.2022.122305
https://doi.org/10.1016/j.seppur.2022.122305

[54] Zhu, H.; Jiang, R.; Xiao, L.; Chang, Y.; Guan, Y.; Li, X.; Zeng, G. Photocatalytic Decolorization and Degradation of Congo red on Innovative Crosslinked Chitosan/nano-CdS Composite Catalyst under Visible Light Irradiation. J. Hazard. Mater. 2009, 169, 933-940. https://doi.org/10.1016/j.jhazmat.2009.04.037
https://doi.org/10.1016/j.jhazmat.2009.04.037

[55] Oda, A.M.; Kadhum, S.H.; Farhood, A.S.; Alkadhum, H.A. Degradation of Congo red Solution by Zinc Oxide/Silver Composite Preheated at Different Temperatures. J. Thermodyn. Catal. 2014, 5, 1000127. https://doi.org/10.4172/2157-7544.1000127
https://doi.org/10.4172/2157-7544.1000127