Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).

Можливість отримання гіалуронової кислоти з ціанобактерій

Tetyana Kozlovs’ka1, Myroslav Malovanyy2, Volodymyr Nykyforov3, Olha Novokhatko3, Oksana Liuta2, Ivan Tymchuk2, Valentyna Onipko4
Affiliation: 
1 Kremenchuk Flight College of Kharkiv National University of Internal Affairs, 17/6 Peremogy St., Kremenchuk 39600, Ukraine 2 Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine 3 Kremenchuk Mykhailo Ostrohradskyi National University, 20 University St., Kremenchuk 39600, Ukraine 4 Poltava State Agrarian University, 1/3 Skovorody St., Poltava 36003, Ukraine oksana.v.liuta@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.02.327
AttachmentSize
PDF icon full_text.pdf477.79 KB
Abstract: 
Представлено результати досліджень можливості отримання цінних речовин з біомаси ціанобактерій. Показано, що ціанобактерії природних вод Microcystis aeruginosa та ціанобактеріальні асоціації актиноміцетів є основним джерелом гіалуронової кислоти. Експериментально підтверджена можливість вилучення гіалуронової кислоти. Визначено динаміку її кількісних характеристик.
References: 

[1] Malovanyy, M.; Moroz, O.; Popovich, V.; Kopiy, M.; Tymchuk, I.; Sereda, A.; Krusir, G.; Soloviy, Ch. The Perspective of Using the «Open Biological Conveyor» Method for Purifying Landfill Filtrates. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100611. https://doi.org/10.1016/j.enmm.2021.100611
[2] Zagirnyak, M.; Nykyforov, V.; Malovanyу, M.; Sameshova, D.; Kozlovs’ka, T.; Yelizarov, M.; Shtrbova, E.; Shlyk, S.; Dihtiar, S. Ekolohichna Biotekhnolohia Pererobky Synio-Zelenykh Vodorostei; PP Shcherbatykh O., 2017.
[3] Starchevskyy, V.; Bernatska, N.; Typilo, I.; Oliynyk, L.; Strogan, O. Establishment of the Regularities of the Concentrations Change of Microorganisms and Water-Soluble Compounds in Polluted Water after Ultrasound Treatment. Chem. Chem. Technol. 2021, 15, 408–413. https://doi.org/10.23939/chcht15.03.408
[4] Koval, I. Determination of the Rate Constant of Microorganisms Destruction after Ultrasound Water Treatment and Different Gases Action. Chem. Chem. Technol. 2022, 16, 652–659. https://doi.org/10.23939/chcht16.04.652
[5] Nykyforov, V.; Malovanyy, M.; Kozlovs’ka, T; Novokhatko, O.; Dihtiar, S. The Biotechnological Ways of Blue-Green Algae Complex Processing. East.-Eur. J. Enterp. Technol. 2016, 5(10 (83), 11–18. https://doi.org/10.15587/1729-4061.2016.79789
[6] Pasenko, A.; Novokhatko, O.; Kozlovs’ka, T.; Dihtiar, S.; Nykyforova, O. Osnovni Pidkhody do Matematychnoho Modeliuvannia Biolohichnoi Produktyvnosti Tsianei yak Syrovynnoi Bazy Biokonversii. Ekolohichna bezpeka 2016, 2, 118–127. http://nbuv.gov.ua/UJRN/ekbez_2016_2_19
[7] Malovanyy, M.; Nykyforov, V.; Kharlamova, O.; Synelnykov, O. Production of Renewable Energy Resources via Complex Treatment of Cyanobacteria Biomass. Chem. Chem. Technol. 2016, 10, 251–254. https://doi.org/10.23939/chcht10.02.251
[8] Pospelov, B.; Kovrehin, V.; Rybka, E.; Krainiukov, O.; Petukhova, O.; Butenko, T.; Borodych, P.; Morozov, I.; Horbov, O.; Hrachova, I. Development of a Method for Detecting Dangerous States of Polluted Atmospheric Air Based on the Current Recurrence of the Combined Risk. East.-Eur. J. Enterp. Technol. 2020, 5(9 (107), 49–56. https://doi.org/10.15587/1729-4061.2020.213892
[9] Pospelov, B.; Rybka, E.; Meleshchenko, R.; Krainiukov, O.; Harbuz, S.; Bezuhla, Y.; Morozov, I.; Kuruch, A.; Saliyenko, O.; Vasylchenko, R. Use of Uncertainty Function for Identification of Hazardous States of Atmospheric Pollution Vector. East.-Eur. J. Enterp. Technol. 2020, 2(10 (104), 6–12. https://doi.org/10.15587/1729-4061.2020.200140
[10] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Yatsukh, K. Sewage Sludge as a Component to Create a Substrate for Biological Reclamation. Ecol. Eng. Environ. Technol. 2021, 22, 101–110. https://doi.org/10.12912/27197050/137863
[11] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Chornomaz, N.; Popovych, O.; Grechanik, R.; Symak, D. Review of the Global Experience in Reclamation of Disturbed Lands. Ecol. Eng. Environ. Technol. 2021, 22, 24–30. https://doi.org/10.12912/27197050/132097
[12] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies for the Growth Substrate Based on the Man-Made Waste - Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps and Quarries. Int. J. Foresight Innov. Policy 2020, 14, 248–263. https://doi.org/10.1504/IJFIP.2020.10033249
[13] Stadnicki, J.; Terebukh, A. Classification of Benefits by the Criterion of Factors of the Location of Production as a Tool for Management of the Spatial Organization of the Economy. Manag. Prod. Eng. Rev. 2020, 11, 25–33. https://doi.org/10.24425/mper.2020.136117
[14] Lisovska, L.; Mrykhina, O.; Terebukh, A.; Kozmuk, N. Modeling of Financial Results of Subjects of the Innovation Process in the Region. Financ. Credit Act.: Probl. Theory Pract. 2022, 3, 122–131. https://doi.org/10.55643/fcaptp.3.44.2022.3720
[15] Shukla, P.; Srivastava, P.; Mishra, A. Downstream Process Intensification for Biotechnologically Generated Hyaluronic Acid: Purification and Characterization. J. Biosci. Bioeng. 2023, 136, 232–238. https://doi.org/10.1016/j.jbiosc.2023.06.003
[16] Nykyforov, V.V.; Kozlovs’ka, T.F.; Novokhatko, O.V; Digtiar, S.V. On Additional Possibilities of Using the Cyanobacteria Substrate and Digestate. In Water Supply and Wastewater Disposal, Lublin University of Technology, 2018; pp 207–220.
[17] Sutherland I. Novel and Established Applications of Microbial Polysaccharides. Trends Biotechnol. 1998, 16, 41–46. https://doi.org/10.1016/S0167-7799(97)01139-6
[18] Murado, M.; Montemayor, M.; Cabo, M.; Vázquez, J.; González, M. Optimization of Extraction and Purification Process of Hyaluronic Acid from Fish Eyeball. Food Bioprod. Process. 2012, 90, 491–498. https://doi.org/10.1016/j.fbp.2011.11.002.
[19] Mendichi, R.; Schieroni, A. Fractionation and Characterization of Ultra-High Molar Mass Hyaluronan: 2. On-Line Size Exclusion Chromatography Methods. Polymer 2002, 43, 6115–6121. https://doi.org/10.1016/S0032-3861(02)00586-4
[20] Patil, K.; Patil, D.; Chaudhari, B.; Chincholkar, S. Production of Hyaluronic Acid from Streptococcus Zooepidemicus MTCC 3523 and its Wound Healing Activity. J. Biosci. Bioeng. 2011, 111, 286–288. https://doi.org/10.1016/j.jbiosc.2010.10.012
[21] Malovanyy, M.; Moroz, O.; Hnatush, S.; Maslovska, O.; Zhuk, V.; Petrushka, I.; Nykyforov, V.; Sereda, A. Perspective Technologies of the Treatment of the Wastewaters with High Content of Organic Pollutants and Ammoniacal Nitrogen. J. Ecol. Eng. 2019, 20, 8‒15. https://doi.org/10.12911/22998993/94917
[22] Malovanyy, M.; Zhuk, V.; Nykyforov, V.; Bordun, I.; Balandiukh, I.; Leskiv, G. Experimental Investigation of Microcystisaeruginosa Cyanobacteria Thickening to Obtain a Biomass for the Energy Production. J. Water Land Dev. 2019, 43, 113–119. https://doi.org/10.2478/jwld-2019-0069
[23] Nykyforov, V.; Malovanyy, M.; Aftanaziv, I.; Shevchuk, L.; Strutynska, L. Developing a Technology for Treating Cyanobacteria Biomass Using Vibro-Resonance Cavitators. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2019, 6, 181–188. https://doi.org/10.29202/nvngu/2019-6/27
[24] Chong, B.; Blank, L.; Mclaughlin, R.; Nielsen, L. Microbial Hyaluronic Acid Production. Appl. Microbiol. Biotechnol. 2005, 66, 341–351. https://doi.org/10.1007/s00253-004-1774-4