Possibility of Obtaining Hyaluronic Acid from Cyanobacteria

×

Error message

  • Deprecated function: Unparenthesized `a ? b : c ? d : e` is deprecated. Use either `(a ? b : c) ? d : e` or `a ? b : (c ? d : e)` in include_once() (line 1439 of /home/science2016/public_html/includes/bootstrap.inc).
  • Deprecated function: Array and string offset access syntax with curly braces is deprecated in include_once() (line 3557 of /home/science2016/public_html/includes/bootstrap.inc).
Tetyana Kozlovs’ka1, Myroslav Malovanyy2, Volodymyr Nykyforov3, Olha Novokhatko3, Oksana Liuta2, Ivan Tymchuk2, Valentyna Onipko4
Affiliation: 
1 Kremenchuk Flight College of Kharkiv National University of Internal Affairs, 17/6 Peremogy St., Kremenchuk 39600, Ukraine 2 Lviv Polytechnic National University, 12 S. Bandery St., Lviv 79013, Ukraine 3 Kremenchuk Mykhailo Ostrohradskyi National University, 20 University St., Kremenchuk 39600, Ukraine 4 Poltava State Agrarian University, 1/3 Skovorody St., Poltava 36003, Ukraine oksana.v.liuta@lpnu.ua
DOI: 
https://doi.org/10.23939/chcht19.02.327
AttachmentSize
PDF icon full_text.pdf477.79 KB
Abstract: 
The results of studies on the possible producing valuable substances from cyanobacterial biomass are presented. It is shown that the main source of hyaluronic acid is the cyanobacteria from surface waters known as Microcystis aeruginosa and cyanobacterial associations of actinomycetes. The possibility of hyaluronic acid extraction has been experimentally proven. The dynamics of its quantitative characteristics were determined.
References: 

[1] Malovanyy, M.; Moroz, O.; Popovich, V.; Kopiy, M.; Tymchuk, I.; Sereda, A.; Krusir, G.; Soloviy, Ch. The Perspective of Using the «Open Biological Conveyor» Method for Purifying Landfill Filtrates. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100611. https://doi.org/10.1016/j.enmm.2021.100611
[2] Zagirnyak, M.; Nykyforov, V.; Malovanyу, M.; Sameshova, D.; Kozlovs’ka, T.; Yelizarov, M.; Shtrbova, E.; Shlyk, S.; Dihtiar, S. Ekolohichna Biotekhnolohia Pererobky Synio-Zelenykh Vodorostei; PP Shcherbatykh O., 2017.
[3] Starchevskyy, V.; Bernatska, N.; Typilo, I.; Oliynyk, L.; Strogan, O. Establishment of the Regularities of the Concentrations Change of Microorganisms and Water-Soluble Compounds in Polluted Water after Ultrasound Treatment. Chem. Chem. Technol. 2021, 15, 408–413. https://doi.org/10.23939/chcht15.03.408
[4] Koval, I. Determination of the Rate Constant of Microorganisms Destruction after Ultrasound Water Treatment and Different Gases Action. Chem. Chem. Technol. 2022, 16, 652–659. https://doi.org/10.23939/chcht16.04.652
[5] Nykyforov, V.; Malovanyy, M.; Kozlovs’ka, T; Novokhatko, O.; Dihtiar, S. The Biotechnological Ways of Blue-Green Algae Complex Processing. East.-Eur. J. Enterp. Technol. 2016, 5(10 (83), 11–18. https://doi.org/10.15587/1729-4061.2016.79789
[6] Pasenko, A.; Novokhatko, O.; Kozlovs’ka, T.; Dihtiar, S.; Nykyforova, O. Osnovni Pidkhody do Matematychnoho Modeliuvannia Biolohichnoi Produktyvnosti Tsianei yak Syrovynnoi Bazy Biokonversii. Ekolohichna bezpeka 2016, 2, 118–127. http://nbuv.gov.ua/UJRN/ekbez_2016_2_19
[7] Malovanyy, M.; Nykyforov, V.; Kharlamova, O.; Synelnykov, O. Production of Renewable Energy Resources via Complex Treatment of Cyanobacteria Biomass. Chem. Chem. Technol. 2016, 10, 251–254. https://doi.org/10.23939/chcht10.02.251
[8] Pospelov, B.; Kovrehin, V.; Rybka, E.; Krainiukov, O.; Petukhova, O.; Butenko, T.; Borodych, P.; Morozov, I.; Horbov, O.; Hrachova, I. Development of a Method for Detecting Dangerous States of Polluted Atmospheric Air Based on the Current Recurrence of the Combined Risk. East.-Eur. J. Enterp. Technol. 2020, 5(9 (107), 49–56. https://doi.org/10.15587/1729-4061.2020.213892
[9] Pospelov, B.; Rybka, E.; Meleshchenko, R.; Krainiukov, O.; Harbuz, S.; Bezuhla, Y.; Morozov, I.; Kuruch, A.; Saliyenko, O.; Vasylchenko, R. Use of Uncertainty Function for Identification of Hazardous States of Atmospheric Pollution Vector. East.-Eur. J. Enterp. Technol. 2020, 2(10 (104), 6–12. https://doi.org/10.15587/1729-4061.2020.200140
[10] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Yatsukh, K. Sewage Sludge as a Component to Create a Substrate for Biological Reclamation. Ecol. Eng. Environ. Technol. 2021, 22, 101–110. https://doi.org/10.12912/27197050/137863
[11] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Chornomaz, N.; Popovych, O.; Grechanik, R.; Symak, D. Review of the Global Experience in Reclamation of Disturbed Lands. Ecol. Eng. Environ. Technol. 2021, 22, 24–30. https://doi.org/10.12912/27197050/132097
[12] Tymchuk, I.; Malovanyy, M.; Shkvirko, O.; Zhuk, V.; Masikevych, A.; Synelnikov, S. Innovative Creation Technologies for the Growth Substrate Based on the Man-Made Waste - Perspective Way for Ukraine to Ensure Biological Reclamation of Waste Dumps and Quarries. Int. J. Foresight Innov. Policy 2020, 14, 248–263. https://doi.org/10.1504/IJFIP.2020.10033249
[13] Stadnicki, J.; Terebukh, A. Classification of Benefits by the Criterion of Factors of the Location of Production as a Tool for Management of the Spatial Organization of the Economy. Manag. Prod. Eng. Rev. 2020, 11, 25–33. https://doi.org/10.24425/mper.2020.136117
[14] Lisovska, L.; Mrykhina, O.; Terebukh, A.; Kozmuk, N. Modeling of Financial Results of Subjects of the Innovation Process in the Region. Financ. Credit Act.: Probl. Theory Pract. 2022, 3, 122–131. https://doi.org/10.55643/fcaptp.3.44.2022.3720
[15] Shukla, P.; Srivastava, P.; Mishra, A. Downstream Process Intensification for Biotechnologically Generated Hyaluronic Acid: Purification and Characterization. J. Biosci. Bioeng. 2023, 136, 232–238. https://doi.org/10.1016/j.jbiosc.2023.06.003
[16] Nykyforov, V.V.; Kozlovs’ka, T.F.; Novokhatko, O.V; Digtiar, S.V. On Additional Possibilities of Using the Cyanobacteria Substrate and Digestate. In Water Supply and Wastewater Disposal, Lublin University of Technology, 2018; pp 207–220.
[17] Sutherland I. Novel and Established Applications of Microbial Polysaccharides. Trends Biotechnol. 1998, 16, 41–46. https://doi.org/10.1016/S0167-7799(97)01139-6
[18] Murado, M.; Montemayor, M.; Cabo, M.; Vázquez, J.; González, M. Optimization of Extraction and Purification Process of Hyaluronic Acid from Fish Eyeball. Food Bioprod. Process. 2012, 90, 491–498. https://doi.org/10.1016/j.fbp.2011.11.002.
[19] Mendichi, R.; Schieroni, A. Fractionation and Characterization of Ultra-High Molar Mass Hyaluronan: 2. On-Line Size Exclusion Chromatography Methods. Polymer 2002, 43, 6115–6121. https://doi.org/10.1016/S0032-3861(02)00586-4
[20] Patil, K.; Patil, D.; Chaudhari, B.; Chincholkar, S. Production of Hyaluronic Acid from Streptococcus Zooepidemicus MTCC 3523 and its Wound Healing Activity. J. Biosci. Bioeng. 2011, 111, 286–288. https://doi.org/10.1016/j.jbiosc.2010.10.012
[21] Malovanyy, M.; Moroz, O.; Hnatush, S.; Maslovska, O.; Zhuk, V.; Petrushka, I.; Nykyforov, V.; Sereda, A. Perspective Technologies of the Treatment of the Wastewaters with High Content of Organic Pollutants and Ammoniacal Nitrogen. J. Ecol. Eng. 2019, 20, 8‒15. https://doi.org/10.12911/22998993/94917
[22] Malovanyy, M.; Zhuk, V.; Nykyforov, V.; Bordun, I.; Balandiukh, I.; Leskiv, G. Experimental Investigation of Microcystisaeruginosa Cyanobacteria Thickening to Obtain a Biomass for the Energy Production. J. Water Land Dev. 2019, 43, 113–119. https://doi.org/10.2478/jwld-2019-0069
[23] Nykyforov, V.; Malovanyy, M.; Aftanaziv, I.; Shevchuk, L.; Strutynska, L. Developing a Technology for Treating Cyanobacteria Biomass Using Vibro-Resonance Cavitators. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2019, 6, 181–188. https://doi.org/10.29202/nvngu/2019-6/27
[24] Chong, B.; Blank, L.; Mclaughlin, R.; Nielsen, L. Microbial Hyaluronic Acid Production. Appl. Microbiol. Biotechnol. 2005, 66, 341–351. https://doi.org/10.1007/s00253-004-1774-4