Дослідженя впливу поліамідного наповнювача на фізико-механічні властивості високоміцних бетонів
| Attachment | Size |
|---|---|
| 2.46 MB |
[1] Bušić, R; Miličević, I; Rakocija, I; Mendeš, A. Experimental Investigation on Workability and Mechanical Properties of Carbon Fiber Reinforced High-Strength Concrete (HSC) Containing Waste Bakelite Aggregate (WBA). Mater Today: Proc. 2023, 6, 131. https://doi.org/10.1016/j.matpr.2023.06.151
[2] Hashim, Y.; Yang, Q.; Li, P. Load Path Dependence for Passively and Actively Confined High-Strength Concrete.Constr Build Mater. 2024, 440, 137353. https://doi.org/10.1016/j.conbuildmat.2024.137353
[3] Sidhu, A.; Siddique, R. Review on Effect of Curing Methods on High Strength Concrete. Constr Build Mater. 2024, 438, 136858. https://doi.org/10.1016/j.conbuildmat.2024.136858
[4] Guan, Z.; Lai, Z.; Qin, J.; Chen, Y.; Wen, Y.; Huang, R. Mechanical Properties of High-Strength Concrete (HSC) under Projectile Penetration. Constr Build Mater. 2024, 442, 137579. https://doi.org/10.1016/j.conbuildmat.2024.137579
[5] Ahmad, M.; Rizwan, M.; Javed, M.; Alkhattabi, L.; Aslam, F.; Qamar, M.; Ullah, F. Optimizing Hybrid Fiber Content for Enhanced Thermo-Mechanical Performance of High-Strength Concrete. Mater Today Commun. 2024, 39, 109293. https://doi.org/10.1016/j.mtcomm.2024.109293
[6] Du, T.; Liu, F.; Wei, H.; Li, Y.; Yang, H.; Peng, K. Behaviours of Circular High-Strength Concrete-Filled High-Strength Steel Tubular Columns after Constant Heating. J Constr Steel Res. 2024, 221, 108933. https://doi.org/10.1016/j.jcsr.2024.108933
[7] Shevchenko, V.; Kotsay, G. Influence of Fine-Grinded Glass Additives on the Induction and Post-induction Periods of Portland Cement Hardening. Chem. Chem. Technol. 2014, 8, 189–192. https://doi.org/10.23939/chcht08.02.189
[8] Pakravan, H.R; Ozbakkaloglu, T. Synthetic Fibers for Cementitious Composites: A Critical and in-Depth Review of Recent Advances. Constr Build Mater. 2019, 207, 491–518. https://doi.org/10.1016/j.conbuildmat.2019.02.078
[9] Kabat, O.; Boiko, Yu. Polymer Composites Based on Aromatic Polyamide and Aramid Fiber for Heavy-Duty Friction and Sealing Units. Chem. Chem. Technol. 2025, 19, 335–341. https://doi.org/10.23939/chcht19.02.335
[10] Suberlyak, O.; Grytsenko, O.; Baran, N.; Yatsulchak, G.; Berezhnyy, B. Formation Features of Tubular Products on the Basis of Composite Hydrogels. Chem. Chem. Technol. 2020, 14, 312–317. https://doi.org/10.23939/chcht14.03.312
[11] Suberlyak, O. V.; Baran, N. M.; Melnyk, Y. Y.; Grytsenko, O. M.; Yatsulchak, H. V. Influence of the Molecular Weight of Polyvinylpyrrolidone on the Physicomechanical Properties of Composite Polyamide Hydrogel Membranes. Mater Sci. 2020, 55, 758–764. https://link.springer.com/article/10.1007/s11003-020-00368-3
[12] Baran, N.; Grytsenko, O.; Dulebova, L.; Spiśak, E. Features of the Formation of a Reinforcing Coating on Hydrogel Membranes Based on Polyvinylpyrrolidone Copolymers. Appl Sci. 2024, 14, 3234. https://doi.org/10.3390/app14083234
[13] Kabat, O.; Sytar, V.; Sukhyy, K. Antifrictional Polymer Composites Based on Aromatic Polyamide and Carbon Black. Chem. Chem. Technol. 2018, 12, 326–330. https://doi.org/10.23939/chcht12.03.326
[14] Caballero, B.M.; Lopez-Urionabarrenechea, A.; Gonzalez-Arcos, J.P.; Perez-Martinez, B.B.; Acha, E.; Iturrondobeitia, M.; Ibarretxe, J.; Esnaola, A.; Baskaran, M. Recycling Fiber-Reinforced Polyamide Waste from the Automotive Industry: Life Cycle Assessment (LCA) of an Advanced Pyrolysis Process to Reclaim Glass Fibers and Valuable Chemicals. Materials 2025, 18, 1594. https://doi.org/10.3390/ma18071594
[15] Kim, K.; Kim, M.; Kim, Y.; Kim, J.; Lim, J.; Lee, W.; Kim, H.S.; Cho, D.-H.; Lee, J.; Choi, S. Melt Spinnability Comparison of Mechanically and Chemically Recycled Polyamide 6 for Plastic Waste Reuse. Polymers 2024, 16, 3152. https://doi.org/10.3390/polym16223152
[16] Gama, N.; Araújo, J.; Godinho, B.; Ferreira, A.; Barros-Timmons, A. Solvolysis of Nylon: A Pathway to Sustainable Recycling and Circular Economy. Sustainability 2024, 16, 9725. https://doi.org/10.3390/su16229725
[17] Kazemi, M.; Kabir, Sk. F.; Fini, E. Review State of the Art in Recycling Waste Thermoplastics and Thermosets and their Applications in Construction. Resour Conserv Recycl. 2021, 174, 105776. https://doi.org/10.1016/j.resconrec.2021.105776
[18] Colangelo, F.; Cioffi, R.; Liguori, B.; Iucolano, F. Recycled Polyolefins Waste as Aggregates for Lightweight Concrete. Composites, Part B 2016, 106, 234–241. https://doi.org/10.1016/j.compositesb.2016.09.041
[19] Lee, J.; Kim, J.; Ahn, J.; Ahn, Y.; Lee, S. Current Advancements in the Bio-Based Production of Polyamides. Trends Chem. 2023, 12, 873–891. https://doi.org/10.1016/j.trechm.2023.10.001
[20] Kabat, O.; Sytar, V.; Derkach, O.; Sukhyy, K. Polymeric Composite Materials of Tribotechnical Purpose with a High Level of Physical, Mechanical and Thermal Properties. Chem. Chem. Technol. 2021, 15, 543–550. https://doi.org/10.23939/chcht15.04.543
[21] Zhang, Q.; Zhu, G.-R.; Xiao, X.-X.; Jiang, M.; He, F.-M.; Li, X.; Guo, D.; Zhao, H.B.; Zhao, Z.-Y.; Chen, L.; et al. Room-Temperature Hydrogen Bonding and High-Temperature Rearrangement towards High-Performance Flame-Retardant Aliphatic Polyamide. Polymer 2024, 295, 126780. https://doi.org/10.1016/j.polymer.2024.126780
[22] Kijo-Kleczkowska, A.; Szumera, M.; Gnatowski, A.; Sadkowski, D. Comparative Thermal Analysis of Coal Fuels, Biomass, Fly Ash and Polyamide. Energy 2022, 258, 124840. https://doi.org/10.1016/j.energy.2022.124840
[23] Dencheva, N.; Nunes, T.; Oliveira, M.; Denchev, Z. Microfibrillar Composites Based on Polyamide/Polyethylene Blends. 1. Structure Investigations in Oriented and Isotropic Polyamide 6. Polymer 2005, 46, 887–901. https://doi.org/10.1016/j.polymer.2004.11.105
[24] Abdel-Maksoud, G.; Mohamed, O.; Mohamed, W.; Elnagar, K.; Abdallah, A.; Youssef, R.; Elsayed, D.; Labib, N.; Bayoumy, A.; Elhaes, H.; et al. Physical Prospective of Polyamide 6 for the Consolidation of Fragile Vegetable Tanned Leather Artifacts. J Cult Heritage. 2024, 67, 32–41. https://doi.org/10.1016/j.culher.2024.02.002
[25] Krylova, V.; Dukštienė, N. The Structure of PA-Se-S-Cd Composite Materials Probed with FTIR Spectroscopy. Appl Surf Sci. 2019, 470, 462–471. https://doi.org/10.1016/j.apsusc.2018.11.121
[26] Dasgupta, S.; Hammond, W.B.; Goddard III, W.A. Crystal Structures and Properties of Nylon Polymers. J Am Chem Soc. 1996, 118, 12291–12301.
[27] Zope, I. S.; Dasari, A.; Guan, F.; Yu, Z-Z. Influence of Metal Ions on Thermo-Oxidative Stability and Combustion Response of Polyamide 6/Clay Nanocomposites. Polymer 2016, 92, 102–113. https://doi.org/10.1016/j.polymer.2016.03.087
[28] Al-Mansour, A.; Zhu, Y.; Lan, Y.; Dang, N.; Alwathaf, A.; Zeng, Q. Improving the Adhesion between Recycled Plastic Aggregates and the Cement Matrix. In Reuse of Plastic Waste in Eco-Efficient Concrete; Edited by: Pacheco-Torgal, F.; Khatib, J., Eds.; Elsevier, 2024; pp 113–138. https://doi.org/10.1016/B978-0-443-13798-3.00008-5
[29] Ksouri, I.; de Almeida, O.; Haddar, N. Long Term Ageing of Polyamide 6 and Polyamide 6 Reinforced with 30% of Glass Fibers: Physicochemical, Mechanical and Morphological Characterization. J Polym Res. 2017, 24, 133. https://doi.org/10.1007/s10965-017-1292-6.
[30] Hou, Y. The Moisture Absorption of 3D Printed Short Carbon Fibre Reinforced Polyamide. Composites, Part A. 2024, 184, 108266. https://doi.org/10.1016/j.compositesa.2024.108266
[31] Venoor, V.; Park, J. H.; Kazmer, D. O.; Sobkowicz, M. J. Understanding the Effect of Water in Polyamides: A Review. Polym Rev. 2020, 61, 598–645. https://doi.org/10.1080/15583724.2020.1855196
[32] Thirumalai, R.; Løgstrup, D. P.; Andersen, T., & Lystrup, A. Influence of Moisture Absorption on Properties of Fiber Reinforced Polyamide 6 Composites. In Proceedings of the 26th Annual Technical Conference of the American Society for Composites 2011 and the 2nd Joint US-Canada Conference on Composites; 2011, 1; pp 500–510.
[33] Meng, Li-Yi; Wang, Y.-S.; Lin, R.; Wang, X.-Y. The Influence and Mechanism Analysis of Aluminum Sulfate as an Environmentally Friendly Early Strength Agent on the Properties of Cement-Based Materials. Case Stud Constr Mater. 2024, 20, e03278. https://doi.org/10.1016/j.cscm.2024.e03278
[34] Briendl, L.G.; Mittermayr, F.; Baldermann, Andre; Steindl, F.R.; Sakoparnig, M.; Letofsky-Papst, I.; Galan, I. Early Hydration of Cementitious Systems Accelerated by Aluminium Sulphate: Effect of Fine Limestone. Cem Concr Res. 2020, 134, 106069. https://doi.org/10.1016/j.cemconres.2020.106069
[35] Liu, X; Ma, B; Tan, H.; Gu, B.; Zhang, T.; Chen, P.; Li, H.; Mei, J. Effect of Aluminum Sulfate on the Hydration of Portland Cement, Tricalcium Silicate and Tricalcium Aluminate. Constr Build Mater. 2020, 232, 117179. https://doi.org/10.1016/j.conbuildmat.2019.117179
[36] Kishar, E.A; Ahmed, D.A; Mohammed, M.R; Noury, R. Effect of Calcium Chloride on the Hydration Characteristics of Ground Clay Bricks Cement Pastes. Beni-Suef Univ. J. Basic Appl. Sci 2013, 2, 20–30. https://doi.org/10.1016/j.bjbas.2013.09.003
[37] Zhao, B.; Wen, J.; Zhai, D.; Tang, R; Chen, S.; Xin, J. Effect of Calcium Chloride on the Properties of Gangue Cemented Paste Backfill: Experimental Results of Setting Time, Rheological Properties, Mechanical Strength and Microscopic Properties. Case Stud Constr Mater. 2025, 22, e04331. https://doi.org/10.1016/j.cscm.2025.e04331
[38] Juenger, M.C.G.; Monteiro, P.J.M.; Gartner, E.M.; Denbeaux, G.P. A Soft X-ray Microscope Investigation into the Effects of Calcium Chloride on Tricalcium Silicate Hydration. Cem Concr Res. 2005, 35, 19–25.
[39] Balonis, M. Solid Solutions Among Cement AFm Phases Containing Nitrate and Nitrite Ions. Adv Cem Res. 2023, 36, 337–358. https://doi.org/10.1680/jadcr.23.00010
[40] Zhuo, C.; Yishun, L; Fang, D.; Kejin, W.; Tianxiao, Z.; Haibao, W. Effect of Calcium Nitrate on Hydration Properties and Strength Development of Calcium Sulfoaluminate Cement. Constr Build Mater. 2024, 421, 135770. https://doi.org/10.1016/j.conbuildmat.2024.135770
[41] Balonis, M.; Mędala, M.; Glasser, F.P. Influence of Calcium Nitrate and Nitrite on the Constitution of AFm and AFt Cement Hydrates. Adv Cem Res. 2011, 23, 129–143. https://doi.org/10.1680/adcr.10.00002
[42] Saatci, S.; Sirin Cetin, F.; Sarra Aloui, S.; Naseri, J. Effects of Steel Fiber Type and Ratio on the One-Way Bending Behavior of Hybrid Fiber Reinforced Concrete Thin Panels. Constr Build Mater. 2024, 411, 134190. https://doi.org/10.1016/j.conbuildmat.2023.134190
[43] Wang, S.; Wang, B.; Zhu, H.; Chen, G.; Li, Z.; Yang, L.; Zhang, Y.; Zhou, X. Ultra-High Performance Concrete: Mix Design, Raw Materials and Curing Regimes-A Review. Mater Today Commun. 2023, 35, 105468. https://doi.org/10.1016/j.mtcomm.2023.105468
[44] Fu, B.; Xu, G.-T.; Peng, W.-S.; Huang, J.-Z.; Zou, Q.-Q.; Kuang, Y.-D. Performance Enhancement of Recycled Coarse Aggregate Concrete by Incorporating with Macro Fibers Processed from Waste GFRP. Constr Build Mater. 2024, 411, 134166. https://doi.org/10.1016/j.conbuildmat.2023.134166
[45] Liang, N.; Geng, S.; Mao, J.; Liu, X.; Zhou, X. Investigation on Cracking Resistance Mechanism of Basalt-Polypropylene Fiber Reinforced Concrete Based on SEM Test. Constr Build Mater. 2024, 411, 134102. https://doi.org/10.1016/j.conbuildmat.2023.134102
[46] Du, J.; Meng, W.; Khayat, K. H.; Bao, Y.; Guo, P.; Lyu, Z.; Abu-obeidah, A.; Nassif, H.; Wang, H. New Development of Ultra-High-Performance Concrete (UHPC). Composites, Part B 2021, 224, 109220, https://doi.org/10.1016/j.compositesb.2021.109220
[47] Cavusoglu, I.; Yilmaz, E.; Yilmaz, A. Additivity Effect on Properties of Cemented Coal Fly Ash Backfill Containing Water-Reducing Admixtures. Constr Build Mater. 2021, 267, 121021, https://doi.org/10.1016/j.conbuildmat.2020.121021
[48] Wang, S.; Zhu, H.; Liu, F.; Cheng, S.; Wang, B.; Yang, L. Effects of Steel Fibers and Concrete Strength on Flexural Toughness of Ultra-High Performance Concrete with Coarse Aggregate. Case Stud Constr Mater. 2022, 17, e1170, https://doi.org/10.1016/j.cscm.2022.e01170
[49] Jang, E.; Kim, J.J. ; Yoo, D. Dynamic Pullout Behavior of Multiple Steel Fibers in UHPC: Effects of Fiber Geometry, Inclination Angle, and Loading Rate. Materials 2019, 12, 3365. https://doi.org/10.3390/ma12203365
[50] Ren, L.; Fang, Z.; Wang, K. Design and Behavior of Super-Long Span Cable-Stayed Bridge with CFRP Cables and UHPC Members. Composites, Part B 2019, 164, 72–81. https://doi.org/10.1016/j.compositesb.2018.11.060
[51] Marushchak, U.; Sydor, N.; Margal, I. Impact of Polypropylene Fibers on the Properties of Engineered Cementitious Composites. Lecture Notes in Civ Eng. 2023, 290, 262–269. https://doi.org/10.1007/978-3-031-14141-6_26
[52] Marushchak, U.; Sydor, N.; Braichenko, S.; Margal, I.; Soltysik, R. Modified Fiber Re-Inforced Concrete for Industrial Floors. IOP Conference Series: Mater Sci Eng. 2019, 708, 012094. https://doi.org/10.1088/1757-899X/708/1/012094
[53] Hassan, A.; ElNemr, A.; Goebel, L.; Koenke, C. Effect of Hybrid Polypropylene Fibers on Mechanical and Shrinkage Behavior of Alkali-Activated Slag Concrete. Constr Build Mater. 2024, 411, 134485. https://doi.org/10.1016/j.conbuildmat.2023.134485
[54] Richardson, A. Compressive Strength of Concrete with Polypropylene Fibre Additions. Struct Surv. 2006, 24, 138–153. https://doi.org/10.1108/02630800610666673
[55] Tran, T.; Pham, T.; Huang, Z.; Chen, W.; Hao, H.; Elchalakani, M. Impact Response of Fibre Reinforced Geopolymer Concrete Beams with BFRP Bars and Stirrups. Eng Struct. 2021, 231, 111785. https://doi.org/10.1016/j.engstruct.2020.111785
[56] Hao, Y.; Cheng, L.; Hao, H.; Shahin, M. Enhancing Fiber/Matrix Bonding in Polypropylene Fiber Reinforced Cementitious Composites by Microbially Induced Calcite Precipitation pre-Treatment. Cem Concr Compos. 2018, 88, 1–7. https://doi.org/10.1016/j.cemconcomp.2018.01.001
[57] Stiegelmaier, E.; Costa, T.C.; Pakuszewski, G.; Guelli Ulson de Souza, S.M.; Ulson de Souza, A.A.; Serafini Immich, A.P. Enhancing Polyamide 6: Acid Hydrolysis for Functionalization and Amino Group Quantification. Polymer. 2024, 298, 126905. https://doi.org/10.1016/j.polymer.2024.126905
[58] Novytskyi, Y.; Topylko, N.; Marushchak, U.; Turba, Y. Composite Materials Based on Phosphogypsum for Constructive Layers of Road Pavement. Chem. Chem. Technol. 2024, 18, 7–15. https://doi.org/10.23939/chcht18.01.007
[59] Kropyvnytska, T.; Sanytsky, М.; Kaminskyi, A.; Vakhula, O. Effect of Layered Double Hydroxides Ca-Al LDHs and Polycarboxylate Ethers on the Hardening of Portland Limestone Cement. Eastern-European J Enterp Technol. 2022, 5(6(119), 30–40. https://doi.org/10.15587/1729-4061.2022.266269
[60] Sanytsky, М.; Kropyvnytska, T.; Vakhula, O.; Bobetskyi, Y. Nanomodified Ultra High-Performance Fiber Reinforced Cementitious Composites with Enhanced Operational Characteristics. In Proceedings of CEE 2023. CEE 2023. Lecture Notes in Civil Engineering, vol 438; Blikharskyy, Z.; Koszelnik, P.; Lichołai, L.; Nazarko, P.; Katunský, D., Eds.; Springer, Cham., 2023. https://doi.org/10.1007/978-3-031-44955-0_36
[61] Vakhula, O.; Kindzera, D.; Novytskyi, Y. Study of the Influence of Polycarboxylate Type Superplasticizers MasterGlenium ACE 430 and MasterGlenium ACE 560 on the Physical and Technical Properties of Fine-Grained Concrete. Chem. Chem. Technol. 2025, 19, 286–296. https://doi.org/10.23939/chcht19.02.286